参考文献

参考文献

1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536-44.全文 external link opens in a new window摘要 external link opens in a new window

2. World Health Organization. Clinical management of COVID-19: interim guidance. 2020 [internet publication].全文 external link opens in a new window

3. National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. 2020 [internet publication].全文 external link opens in a new window

4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506.全文 external link opens in a new window摘要 external link opens in a new window

5. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-13.全文 external link opens in a new window摘要 external link opens in a new window

6. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Feb 7;323(11):1061-9.全文 external link opens in a new window摘要 external link opens in a new window

7. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 Apr 30;382(18):1708-20.全文 external link opens in a new window摘要 external link opens in a new window

8. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected by SARS-CoV-2 in Wuhan, China. Allergy. 2020 Feb 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

9. ENT UK. Loss of sense of smell as marker of COVID-19 infection. 2020 [internet publication].全文 external link opens in a new window

10. Chen ZM, Fu JF, Shu Q, et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J Pediatr. 2020 Feb 5 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

11. Shen KL, Yang YH. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr. 2020 Feb 5 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

12. Wang XF, Yuan J, Zheng YJ, et al. Clinical and epidemiological characteristics of 34 children with 2019 novel coronavirus infection in Shenzhen [in Chinese]. Zhonghua Er Ke Za Zhi. 2020 Feb 17;58(0):E008.摘要 external link opens in a new window

13. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020 Apr 23;382(17):1663-5.全文 external link opens in a new window摘要 external link opens in a new window

14. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 17;41(2):145-51.全文 external link opens in a new window摘要 external link opens in a new window

15. Colaneri M, Sacchi P, Zuccaro V, et al. Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020. Euro Surveill. 2020 Apr;25(16).全文 external link opens in a new window摘要 external link opens in a new window

16. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. BMJ. 2020 May 22;369:m1985.全文 external link opens in a new window摘要 external link opens in a new window

17. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19): United States, February 12 - March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):343-6.全文 external link opens in a new window摘要 external link opens in a new window

18. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. Pediatrics. 2020 Jun;145(6):e20200702.全文 external link opens in a new window摘要 external link opens in a new window

19. Creel-Bulos C, Hockstein M, Amin N, et al. Acute cor pulmonale in critically ill patients with Covid-19. N Engl J Med. 2020 May 21;382(21):e70.全文 external link opens in a new window摘要 external link opens in a new window

20. CDC COVID-19 Response Team. Coronavirus disease 2019 in children: United States, February 12 - April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 10;69(14):422-6.全文 external link opens in a new window摘要 external link opens in a new window

21. DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in children and young adults in the Washington, DC metropolitan region. J Pediatr. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

22. Garazzino S, Montagnani C, Donà D, et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020. Euro Surveill. 2020 May;25(18).全文 external link opens in a new window摘要 external link opens in a new window

23. Brambilla I, Castagnoli R, Caimmi S, et al. COVID-19 in the pediatric population admitted to a tertiary referral hospital in Northern Italy: preliminary clinical data. Pediatr Infect Dis J. 2020 Jul;39(7):e160.全文 external link opens in a new window摘要 external link opens in a new window

24. Livingston E, Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA. 2020 Mar 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

25. Tagarro A, Epalza C, Santos M, et al. Screening and severity of coronavirus disease 2019 (COVID-19) in children in Madrid, Spain. JAMA Pediatr. 2020 Apr 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

26. Mehta NS, Mytton OT, Mullins EWS, et al. SARS-CoV-2 (COVID-19): what do we know about children? A systematic review. Clin Infect Dis. 2020 May 11 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

27. Posfay-Barbe KM, Wagner N, Gauthey M, et al. COVID-19 in children and the dynamics of infection in families. Pediatrics. 2020 May 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

28. Castagnoli R, Votto M, Licari A, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 2020 Apr 22 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

29. Knight M, Bunch K, Vousden N, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. BMJ. 2020 Jun 8;369:m2107.全文 external link opens in a new window摘要 external link opens in a new window

30. Ellington S, Strid P, Tong VT, et al. Characteristics of women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status: United States, January 22 – June 7, 2020. MMWR Morb Mortal Wkly Rep. 2020 Jun 26;69(25):769-75.全文 external link opens in a new window摘要 external link opens in a new window

31. Hunter E, Price DA, Murphy E, et al. First experience of COVID-19 screening of health-care workers in England. Lancet. 2020 May 2;395(10234):e77-8.全文 external link opens in a new window摘要 external link opens in a new window

32. Houlihan CF, Vora N, Byrne T, et al. Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. Lancet. 2020 Jul 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

33. Torjesen I. Covid-19: one in 10 cases in England occurred in frontline health and social care staff. BMJ. 2020 Jul 7;370:m2717.全文 external link opens in a new window摘要 external link opens in a new window

34. Kluytmans-van den Bergh MFQ, Buiting AGM, Pas SD, et al. Prevalence and clinical presentation of health care workers with symptoms of coronavirus disease 2019 in 2 Dutch hospitals during an early phase of the pandemic. JAMA Netw Open. 2020 May 1;3(5):e209673.全文 external link opens in a new window摘要 external link opens in a new window

35. Zhan M, Qin Y, Xue X, et al. Death from Covid-19 of 23 health care workers in China. N Engl J Med. 2020 Jun 4;382(23):2267-8.全文 external link opens in a new window摘要 external link opens in a new window

36. Lai X, Wang M, Qin C, et al. Coronavirus disease 2019 (COVID-2019) infection among health care workers and implications for prevention measures in a tertiary hospital in Wuhan, China. JAMA Netw Open. 2020 May 1;3(5):e209666.全文 external link opens in a new window摘要 external link opens in a new window

37. CDC COVID-19 Response Team. Characteristics of health care personnel with COVID-19: United States, February 12 –April 9, 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 17;69(15):477-81.全文 external link opens in a new window摘要 external link opens in a new window

38. Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020 May 5;133(9):1015-24.全文 external link opens in a new window摘要 external link opens in a new window

39. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727-33.全文 external link opens in a new window摘要 external link opens in a new window

40. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22;395(10224):565-74.全文 external link opens in a new window摘要 external link opens in a new window

41. Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Nat Sci Review. 2020 Mar 3 [Epub ahead of print].全文 external link opens in a new window

42. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020 Mar 26;382(13):1199-207.全文 external link opens in a new window摘要 external link opens in a new window

43. Paraskevis D, Kostaki EG, Magiorkinis G, et al. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020 Jan 29;79:104212.摘要 external link opens in a new window

44. Ji W, Wang W, Zhao X, et al. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020 Apr;92(4):433-40.全文 external link opens in a new window摘要 external link opens in a new window

45. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020 Apr 6;30(7):1346-51.全文 external link opens in a new window摘要 external link opens in a new window

46. Lam TT, Shum MH, Zhu HC, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020 Mar 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

47. Mallapaty S. Animal source of the coronavirus continues to elude scientists. Nature. 2020 May 18 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

48. World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions. 2020 [internet publication].全文 external link opens in a new window

49. Liu Y, Gayle AA, Wilder-Smith A, et al. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020 Mar 13;27(2).全文 external link opens in a new window摘要 external link opens in a new window

50. Inglesby TV. Public health measures and the reproduction number of SARS-CoV-2. JAMA. 2020 May 1 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

51. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020 Apr 16;382(16):1564-7.全文 external link opens in a new window摘要 external link opens in a new window

52. Guo ZD, Wang ZY, Zhang SF, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. 2020 Apr 10;26(7).全文 external link opens in a new window摘要 external link opens in a new window

53. Zhou J, Otter JA, Price JR, et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin Infect Dis. 2020 Jul 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

54. Wong MC, Huang J, Lai C, et al. Detection of SARS-CoV-2 RNA in fecal specimens of patients with confirmed COVID-19: a meta-analysis. J Infect. 2020 Jun 11 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

55. Centre for Evidence-Based Medicine; Jefferson T, Spencer EA, Brassey J, et al. SARS-COV-2 and the role of orofecal transmission: evidence brief. 2020 [internet publication].全文 external link opens in a new window

56. Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020 Dec;9(1):386-9.全文 external link opens in a new window摘要 external link opens in a new window

57. To KK, Tsang OT, Chik-Yan Yip C, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 2020 Feb 12 [Epub ahead of print].摘要 external link opens in a new window

58. Centre for Evidence-Based Medicine; Ferner RE, Murray PI, Aronson JK. Spreading SARS-CoV-2 through ocular fluids. 2020 [internet publication].全文 external link opens in a new window

59. Sun T, Guan J. Novel coronavirus and central nervous system. Eur J Neurol. 2020 Mar 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

60. Seah IYJ, Anderson DE, Kang AEZ, et al. Assessing viral shedding and infectivity of tears in coronavirus disease 2019 (COVID-19) patients. Ophthalmology. 2020 Jul;127(7):977-9.全文 external link opens in a new window摘要 external link opens in a new window

61. Farina A, Uccello G, Spreafico M, et al. SARS-CoV-2 detection in the pericardial fluid of a patient with cardiac tamponade. Eur J Intern Med. 2020 Jun;76:100-1.全文 external link opens in a new window摘要 external link opens in a new window

62. Algarroba GN, Rekawek P, Vahanian SA, et al. Visualization of SARS-CoV-2 virus invading the human placenta using electron microscopy. Am J Obstet Gynecol. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

63. Li D, Jin M, Bao P, et al. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open. 2020 May 1;3(5):e208292.全文 external link opens in a new window摘要 external link opens in a new window

64. Mei F, Bonifazi M, Menzo S, et al. First detection of SARS-CoV-2 by real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay in pleural fluid. Chest. 2020 Jun 11 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

65. Frazier KM, Hooper JE, Mostafa HH, et al. SARS-CoV-2 virus isolated from the mastoid and middle ear: implications for COVID-19 precautions during ear surgery. JAMA Otolaryngol Head Neck Surg. 2020 Jul 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

66. Zhou Q, Gao Y, Wang X, et al. Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Ann Transl Med. 2020 May;8(10):629.全文 external link opens in a new window摘要 external link opens in a new window

67. Rickman HM, Rampling T, Shaw K, et al. Nosocomial transmission of COVID-19: a retrospective study of 66 hospital-acquired cases in a London teaching hospital. Clin Infect Dis. 2020 Jun 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

68. McMichael TM, Clark S, Pogosjans S, et al. COVID-19 in a long-term care facility: King County, Washington, February 27 – March 9, 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):339-42.全文 external link opens in a new window摘要 external link opens in a new window

69. Moriarty LF, Plucinski MM, Marston BJ, et al. Public health responses to COVID-19 outbreaks on cruise ships: worldwide, February-March 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):347-52.全文 external link opens in a new window摘要 external link opens in a new window

70. Mosites E, Parker EM, Clarke KEN, et al. Assessment of SARS-CoV-2 infection prevalence in homeless shelters: four U.S. cities, March 27 – April 15, 2020. MMWR Morb Mortal Wkly Rep. 2020 May 1;69(17):521-2.全文 external link opens in a new window摘要 external link opens in a new window

71. Centers for Disease Control and Prevention. Interim guidance for homeless service providers to plan and respond to coronavirus disease 2019 (COVID-19). 2020 [internet publication].全文 external link opens in a new window

72. Yang H, Thompson JR. Fighting covid-19 outbreaks in prisons. BMJ. 2020 Apr 2;369:m1362.全文 external link opens in a new window摘要 external link opens in a new window

73. Dyal JW, Grant MP, Broadwater K, et al. COVID-19 among workers in meat and poultry processing facilities - 19 states, April 2020. MMWR Morb Mortal Wkly Rep. 2020 May 8;69(18).全文 external link opens in a new window摘要 external link opens in a new window

74. Centre for Evidence-Based Medicine; Durand-Moreau Q, Adisesh A, Mackenzie G, et al. What explains the high rate of SARS-CoV-2 transmission in meat and poultry facilities? 2020 [internet publication].全文 external link opens in a new window

75. Waltenburg MA, Victoroff T, Rose CE, et al. Update: COVID-19 among workers in meat and poultry processing facilities: United States, April – May 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 10;69(27):887-92.全文 external link opens in a new window摘要 external link opens in a new window

76. Heavey L, Casey G, Kelly C, et al. No evidence of secondary transmission of COVID-19 from children attending school in Ireland, 2020. Euro Surveill. 2020 May;25(21).全文 external link opens in a new window摘要 external link opens in a new window

77. Ghinai I, Woods S, Ritger KA, et al. Community transmission of SARS-CoV-2 at two family gatherings: Chicago, Illinois, February – March 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 17;69(15):446-50.全文 external link opens in a new window摘要 external link opens in a new window

78. Mat NFC, Edinur HA, Razab MKAA, et al. A single mass gathering resulted in massive transmission of COVID-19 infections in Malaysia with further international spread. J Travel Med. 2020 Apr 18 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

79. Hamner L, Dubbel P, Capron I, et al. High SARS-CoV-2 attack rate following exposure at a choir practice: Skagit County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020 May 15;69(19):606-10.全文 external link opens in a new window摘要 external link opens in a new window

80. Jang S, Han SH, Rhee JY. Cluster of coronavirus disease associated with fitness dance classes, South Korea. Emerg Infect Dis. 2020 May 15;26(8).全文 external link opens in a new window摘要 external link opens in a new window

81. James A, Eagle L, Phillips C, et al. High COVID-19 attack rate among attendees at events at a church: Arkansas, March 2020. MMWR Morb Mortal Wkly Rep. 2020 May 22;69(20):632-5.全文 external link opens in a new window摘要 external link opens in a new window

82. Yusef D, Hayajneh W, Awad S, et al. Large outbreak of coronavirus disease among wedding attendees, Jordan. Emerg Infect Dis. 2020 May 20;26(9).全文 external link opens in a new window摘要 external link opens in a new window

83. Marcus JE, Frankel DN, Pawlak MT, et al. COVID-19 monitoring and response among U.S. air force basic military trainees: Texas, March-April 2020. MMWR Morb Mortal Wkly Rep. 2020 Jun 5;69(22):685-8.全文 external link opens in a new window摘要 external link opens in a new window

84. Burke RM, Midgley CM, Dratch A, et al. Active monitoring of persons exposed to patients with confirmed COVID-19 - United States, January-February 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 6;69(9):245-6.全文 external link opens in a new window摘要 external link opens in a new window

85. Cheng HY, Jian SW, Liu DP, et al. Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA Intern Med. 2020 May 1 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

86. Wang Z, Ma W, Zheng X, et al. Household transmission of SARS-CoV-2. J Infect. 2020 Jul;81(1):179-82.全文 external link opens in a new window摘要 external link opens in a new window

87. Li W, Zhang B, Lu J, et al. The characteristics of household transmission of COVID-19. Clin Infect Dis. 2020 Apr 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

88. Yung CF, Kam KQ, Chong CY, et al. Household transmission of SARS-CoV-2 from adults to children. J Pediatr. 2020 Jul 4 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

89. Du Z, Xu X, Wu Y, et al. Serial interval of COVID-19 among publicly reported confirmed cases. Emerg Infect Dis. 2020 Mar 19;26(6).全文 external link opens in a new window摘要 external link opens in a new window

90. Wei WE, Li Z, Chiew CJ, et al. Presymptomatic transmission of SARS-CoV-2: Singapore, January 23 - March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 10;69(14):411-5.全文 external link opens in a new window摘要 external link opens in a new window

91. Zhang W, Cheng W, Luo L, et al. Secondary transmission of coronavirus disease from presymptomatic persons, China. Emerg Infect Dis. 2020 May 26;26(8).全文 external link opens in a new window摘要 external link opens in a new window

92. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020 Mar 5;382(10):970-71.全文 external link opens in a new window摘要 external link opens in a new window

93. Kupferschmidt K. Study claiming new coronavirus can be transmitted by people without symptoms was flawed. 2020 [internet publication].全文 external link opens in a new window

94. Tong ZD, Tang A, Li KF, et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang province, China, 2020. Emerg Infect Dis. 2020 May 17;26(5).全文 external link opens in a new window摘要 external link opens in a new window

95. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020 May;63(5):706-11.全文 external link opens in a new window摘要 external link opens in a new window

96. Luo SH, Liu W, Liu ZJ, et al. A confirmed asymptomatic carrier of 2019 novel coronavirus (SARS-CoV-2). Chin Med J (Engl). 2020 May 5;133(9):1123-5.全文 external link opens in a new window摘要 external link opens in a new window

97. Lu S, Lin J, Zhang Z, et al. Alert for non-respiratory symptoms of Coronavirus Disease 2019 (COVID-19) patients in epidemic period: a case report of familial cluster with three asymptomatic COVID-19 patients. J Med Virol. 2020 Mar 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

98. Li C, Ji F, Wang L, et al. Asymptomatic and human-to-human transmission of SARS-CoV-2 in a 2-family cluster, Xuzhou, China. Emerg Infect Dis. 2020 Mar 31;26(7).全文 external link opens in a new window摘要 external link opens in a new window

99. World Health Organization. Advice on the use of masks in the context of COVID-19. 2020 [internet publication].全文 external link opens in a new window

100. Gao M, Yang L, Chen X, et al. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir Med. 2020 May 13;169:106026.全文 external link opens in a new window摘要 external link opens in a new window

101. Sakurai A, Sasaki T, Kato S, et al. Natural history of asymptomatic SARS-CoV-2 infection. N Engl J Med. 2020 Jun 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

102. Chen F, Fu D, Yang Q, et al. Low transmission risk of 9 asymptomatic carriers tested positive for both SARS-CoV-2 nucleic acid and serum IgG. J Infect. 2020 Jun 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

103. Liu J, Huang J, Xiang D. Large SARS-CoV-2 outbreak caused by asymptomatic traveler, China. Emerg Infect Dis. 2020 Jun 30;29(9).全文 external link opens in a new window摘要 external link opens in a new window

104. He J, Guo Y, Mao R, et al. Proportion of asymptomatic coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Med Virol. 2020 Jul 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

105. Al-Sadeq DW, Nasrallah GK. The incidence of the novel coronavirus SARS-CoV-2 among asymptomatic patients: a systematic review. Int J Infect Dis. 2020 Jul 2 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

106. Mizumoto K, Kagaya K, Zarebski A, et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020 Mar;25(10).全文 external link opens in a new window摘要 external link opens in a new window

107. Nishiura H, Kobayashi T, Suzuki A, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int J Infect Dis. 2020 Mar 14;94:154-5.全文 external link opens in a new window摘要 external link opens in a new window

108. Day M. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. BMJ. 2020 Mar 23;368:m1165.全文 external link opens in a new window摘要 external link opens in a new window

109. Centre for Evidence-Based Medicine; Heneghan C, Brassey J, Jefferson T. COVID-19: What proportion are asymptomatic? 2020 [internet publication].全文 external link opens in a new window

110. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med. 2020 Jun 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

111. Kimball A, Hatfield KM, Arons M, et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility: King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 3;69(13):377-81.全文 external link opens in a new window摘要 external link opens in a new window

112. Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N Engl J Med. 2020 May 28;382(22):2081-90.全文 external link opens in a new window摘要 external link opens in a new window

113. Stubblefield WB, Talbot HK, Feldstein L, et al. Seroprevalence of SARS-CoV-2 among frontline healthcare personnel during the first month of caring for COVID-19 patients – Nashville, Tennessee. Clin Infect Dis. 2020 Jul 6 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

114. Vahidy FS, Bernard DW, Boom ML, et al. Prevalence of SARS-CoV-2 infection among asymptomatic health care workers in the Greater Houston, Texas, area. JAMA Netw Open. 2020 Jul 1;3(7):e2016451.全文 external link opens in a new window摘要 external link opens in a new window

115. Jiang XL, Zhang XL, Zhao XN, et al. Transmission potential of asymptomatic and paucisymptomatic severe acute respiratory syndrome coronavirus 2 infections: a three-family cluster study in China. 2020 Jun 11;221(12):1948-52.全文 external link opens in a new window摘要 external link opens in a new window

116. Qiu H, Wu J, Hong L, et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020 Jun;20(6):689-96.全文 external link opens in a new window摘要 external link opens in a new window

117. Danis K, Epaulard O, Bénet T, et al. Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, 2020. Clin Infect Dis. 2020 Apr 11 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

118. Frieden TR, Lee CT. Identifying and interrupting superspreading events: implications for control of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020 Jun;26(6):1059-66.全文 external link opens in a new window摘要 external link opens in a new window

119. Stein RA. Super-spreaders in infectious diseases. Int J Infect Dis. 2011 Aug;15(8):e510-3.全文 external link opens in a new window摘要 external link opens in a new window

120. Hui DS. Super-spreading events of MERS-CoV infection. Lancet. 2016 Sep 3;388(10048):942-3.全文 external link opens in a new window摘要 external link opens in a new window

121. Kasraeian M, Zare M, Vafaei H, et al. COVID-19 pneumonia and pregnancy; a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2020 May 19:1-8.全文 external link opens in a new window摘要 external link opens in a new window

122. Sisman J, Jaleel MA, Moreno W, et al. Intrauterine transmission of SARS-COV-2 infection in a preterm infant. Pediatr Infect Dis J. 2020 Jul 10 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

123. Vivanti AJ, Vauloup-Fellous C, Prevot S, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020 Jul 14;11(1):3572.全文 external link opens in a new window摘要 external link opens in a new window

124. Walker KF, O'Donoghue K, Grace N, et al. Maternal transmission of SARS-COV-2 to the neonate, and possible routes for such transmission: a systematic review and critical analysis. BJOG. 2020 Jun 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

125. Groß R, Conzelmann C, Müller JA, et al. Detection of SARS-CoV-2 in human breastmilk. Lancet. 2020 Jun 6;395(10239):1757-8.全文 external link opens in a new window摘要 external link opens in a new window

126. Tam PCK, Ly KM, Kernich ML, et al. Detectable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human breast milk of a mildly symptomatic patient with coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2020 May 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

127. Costa S, Posteraro B, Marchetti S, et al. Excretion of Sars-Cov-2 in human breastmilk samples. Clin Microbiol Infect. 2020 Jun 2 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

128. Salvatore CM, Han JY, Acker KP, et al. Neonatal management and outcomes during the COVID-19 pandemic: an observation cohort study. Lancet Child Adolesc Health. 2020 Jul 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

129. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020 Mar 19;382(12):1177-9.全文 external link opens in a new window摘要 external link opens in a new window

130. To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020 May;20(5):565-74.全文 external link opens in a new window摘要 external link opens in a new window

131. Yu X, Sun S, Shi Y, et al. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit Care. 2020 Apr 23;24(1):170.全文 external link opens in a new window摘要 external link opens in a new window

132. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020 May;581(7809):465-9.全文 external link opens in a new window摘要 external link opens in a new window

133. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-62.全文 external link opens in a new window摘要 external link opens in a new window

134. Chang, Mo G, Yuan X, et al. Time kinetics of viral clearance and resolution of symptoms in novel coronavirus infection. Am J Respir Crit Care Med. 2020 May 1;201(9):1150-2.全文 external link opens in a new window摘要 external link opens in a new window

135. Yang JR, Deng DT, Wu N, et al. Persistent viral RNA positivity during recovery period of a patient with SARS-CoV-2 infection. J Med Virol. 2020 Apr 24 [Epub ahead of print].摘要 external link opens in a new window

136. Jiang X, Luo M, Zou Z, et al. Asymptomatic SARS-CoV-2 infected case with viral detection positive in stool but negative in nasopharyngeal samples lasts for 42 days. J Med Virol. 2020 Apr 24 [Epub ahead of print].摘要 external link opens in a new window

137. Li J, Zhang L, Liu B, et al. Case report: viral shedding for 60 days in a woman with novel coronavirus disease (COVID-19). Am J Trop Med Hyg. 2020 Jun;102(6):1210-3.全文 external link opens in a new window摘要 external link opens in a new window

138. Sun J, Xiao J, Sun R, et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids. Emerg Infect Dis. 2020 May 8;26(8).全文 external link opens in a new window摘要 external link opens in a new window

139. Molina LP, Chow SK, Nickel A, et al. Prolonged detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in an obstetric patient with antibody seroconversion. Obstet Gynecol. 2020 Jul 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

140. Noh JY, Yoon JG, Seong H, et al. Asymptomatic infection and atypical manifestations of COVID-19: comparison of viral shedding duration. J Infect. 2020 May 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

141. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January – March 2020: retrospective cohort study. BMJ. 2020 Apr 21;369:m1443.全文 external link opens in a new window摘要 external link opens in a new window

142. Parasa S, Desai M, Thoguluva Chandrasekar V, et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019: a systematic review and meta-analysis. JAMA Netw Open. 2020 Jun 1;3(6):e2011335.全文 external link opens in a new window摘要 external link opens in a new window

143. Xu K, Chen Y, Yuan J, et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. Clin Infect Dis. 2020 Apr 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

144. Widders A, Broom A, Broom J. SARS-CoV-2: the viral shedding vs infectivity dilemma. Infect Dis Health. 2020 May 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

145. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020 Mar 27;367(6485):1444-8.全文 external link opens in a new window摘要 external link opens in a new window

146. Chen Y, Guo Y, Pan Y, et al. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020 Feb 17;525(1):135-40.全文 external link opens in a new window摘要 external link opens in a new window

147. Hanff TC, Harhay MO, Brown TS, et al. Is there an association between COVID-19 mortality and the renin-angiotensin system: a call for epidemiologic investigations. Clin Infect Dis. 2020 Mar 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

148. Wu Z, Hu R, Zhang C, et al. Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. Crit Care. 2020 Jun 5;24(1):290.全文 external link opens in a new window摘要 external link opens in a new window

149. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020 Apr;14(2):185-92.全文 external link opens in a new window摘要 external link opens in a new window

150. Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020 May 20;323(23):2427-9.全文 external link opens in a new window摘要 external link opens in a new window

151. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271-80.全文 external link opens in a new window摘要 external link opens in a new window

152. Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020 Feb 10;176:104742.摘要 external link opens in a new window

153. Menter T, Haslbauer JD, Nienhold R, et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology. 2020 May 4 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

154. Schaller T, Hirschbühl K, Burkhardt K, et al. Postmortem examination of patients with COVID-19. JAMA. 2020 May 21;323(24):2518-20.全文 external link opens in a new window摘要 external link opens in a new window

155. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020 May 14 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

156. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020 Jul 9;383(2):120-8.全文 external link opens in a new window摘要 external link opens in a new window

157. Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020 Jul;8(7):681-6.全文 external link opens in a new window摘要 external link opens in a new window

158. Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020 Jun 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

159. Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med. 2020 Jun 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

160. Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020 Jul 27 [Epub ahead of print].全文 external link opens in a new window

161. Sardu C, Gambardella J, Morelli MB, et al. Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 2020 May 11;9(5): E1417.全文 external link opens in a new window摘要 external link opens in a new window

162. Tibiriçá E, De Lorenzo A. Increased severity of COVID-19 in people with obesity: are we overlooking plausible biological mechanisms? Obesity (Silver Spring). 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

163. Bermejo-Martin JF, Almansa R, Torres A, et al. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc Res. 2020 May 18 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

164. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020 Jun 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

165. Maier CL, Truong AD, Auld SC, et al. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? Lancet. 2020 Jun 6;395(10239):1758-9.全文 external link opens in a new window摘要 external link opens in a new window

166. van der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020 Jul 24 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

167. World Health Organization. Global surveillance for COVID-19 caused by human infection with COVID-19 virus. 2020 [internet publication].全文 external link opens in a new window

168. Shen N, Zhu Y, Wang X, et al. Characteristics and diagnosis rate of 5,630 subjects receiving SARS-CoV-2 nucleic acid tests from Wuhan, China. JCI Insight. 2020 May 21;5(10):e137662.全文 external link opens in a new window摘要 external link opens in a new window

169. de Lusignan S, Dorward J, Correa A, et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. Lancet Infect Dis. 2020 May 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

170. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): older adults. 2020 [internet publication].全文 external link opens in a new window

171. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): people who are at higher risk for severe illness. 2020 [internet publication].全文 external link opens in a new window

172. Bonanad C, García-Blas S, Tarazona-Santabalbina F, et al. The effect of age on mortality in patients with COVID-19: a meta-analysis with 611,583 subjects. J Am Med Dir Assoc. 2020 Jul;21(7):915-8.全文 external link opens in a new window摘要 external link opens in a new window

173. Burki T. England and Wales see 20 000 excess deaths in care homes. Lancet. 2020 May 23;395(10237):1602.全文 external link opens in a new window摘要 external link opens in a new window

174. Iacobucci G. Covid-19: Nearly half of care homes in northeast England have had an outbreak. BMJ. 2020 May 20;369:m2041.全文 external link opens in a new window摘要 external link opens in a new window

175. Graham N, Junghans C, Downes R, et al. SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes. J Infect. 2020 Jun 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

176. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020 Jun 11;382(24):2372-4.全文 external link opens in a new window摘要 external link opens in a new window

177. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect. 2020 Apr 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

178. Montopoli M, Zumerle S, Vettor R, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (n=4532). Ann Oncol. 2020 May 4 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

179. Zeng F, Dai C, Cai P, et al. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: a possible reason underlying different outcome between sex. J Med Virol. 2020 May 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

180. Raisi-Estabragh Z, McCracken C, Bethell MS, et al. Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J Public Health (Oxf). 2020 Jun 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

181. Alaa AM, Qian Z, Rashbass J, et al. Ethnicity and outcomes of COVID-19 patients in England. 2020 [internet publication].全文 external link opens in a new window

182. Harrison EM, Docherty AB, Barr B, et al; SSRN. Ethnicity and outcomes from COVID-19: the ISARIC CCP-UK prospective observational cohort study of hospitalised patients. 2020 [internet publication].全文 external link opens in a new window

183. Centers for Disease Control and Prevention. COVID-19 in racial and ethnic minority groups. 2020 [internet publication].全文 external link opens in a new window

184. Wortham JM, Lee JT, Althomsons S, et al. Characteristics of persons who died with COVID-19: United States, February 12 – May 18, 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 17;69(28):923-9.全文 external link opens in a new window摘要 external link opens in a new window

185. Liu H, Chen S, Liu M, et al. Comorbid chronic diseases are strongly correlated with disease severity among COVID-19 patients: a systematic review and meta-analysis. Aging Dis. 2020 May 9;11(3):668-78.全文 external link opens in a new window摘要 external link opens in a new window

186. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): people of any age with underlying medical conditions. 2020 [internet publication].全文 external link opens in a new window

187. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020 Apr 22;323(20):2052-9.全文 external link opens in a new window摘要 external link opens in a new window

188. Docherty AB, Harrison EM, Green CA, et al; medRxiv. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. 2020 [internet publication].全文 external link opens in a new window

189. Singh AK, Gillies CL, Singh R, et al. Prevalence of comorbidities and their association with mortality in patients with COVID-19: a systematic review and meta-analysis. Diabetes Obes Metab. 2020 Jun 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

190. Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus disease 2019 case surveillance: United States, January 22–May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020 Jun 19;69(24):759-65.全文 external link opens in a new window摘要 external link opens in a new window

191. Adams ML, Katz DL, Grandpre J. Updated estimates of chronic conditions affecting risk for complications from coronavirus disease, United States. Emerg Infect Dis. 2020 Jul 3;26(9).全文 external link opens in a new window摘要 external link opens in a new window

192. Adams SH, Park MJ, Schaub JP, et al. Medical vulnerability of young adults to severe COVID-19 illness: data from the National Health Interview Survey. J Adolesc Health. 2020 Jul 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

193. Aggarwal G, Cheruiyot I, Aggarwal S, et al. Association of cardiovascular disease with coronavirus disease 2019 (COVID-19) severity: a meta-analysis. Curr Probl Cardiol. 2020 Apr 28:100617.全文 external link opens in a new window摘要 external link opens in a new window

194. Pranata R, Lim MA, Huang I, et al. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: a systematic review, meta-analysis and meta-regression. J Renin Angiotensin Aldosterone Syst. 2020 Apr-Jun;21(2):1470320320926899.全文 external link opens in a new window摘要 external link opens in a new window

195. Zhang J, Wu J, Sun X, et al. Associations of hypertension with the severity and fatality of SARS-CoV-2 infection: a meta-analysis. Epidemiol Infect. 2020 May 28;:1-19.摘要 external link opens in a new window

196. Wang X, Wang S, Sun L, et al. Prevalence of diabetes mellitus in 2019 novel coronavirus: a meta-analysis. Diabetes Res Clin Pract. 2020 May 11:108200.全文 external link opens in a new window摘要 external link opens in a new window

197. Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab Syndr. 2020 May 6;14(4):535-45.全文 external link opens in a new window摘要 external link opens in a new window

198. Desai R, Singh S, Parekh T, et al. COVID-19 and diabetes mellitus: a need for prudence in elderly patients from a pooled analysis. Diabetes Metab Syndr. 2020 May 12;14(4):683-5.全文 external link opens in a new window摘要 external link opens in a new window

199. Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia: a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020 Apr 17;14(4):395-403.全文 external link opens in a new window摘要 external link opens in a new window

200. Chen Y, Yang D, Cheng B, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care. 2020 Jul;43(7):1399-407.全文 external link opens in a new window摘要 external link opens in a new window

201. NHS England. Type 1 and type 2 diabetes and COVID-19 related mortality in England: a whole population study. 2020 [internet publication].全文 external link opens in a new window

202. Singh AK, Singh R. Does poor glucose control increase the severity and mortality in patients with diabetes and COVID-19? Diabetes Metab Syndr. 2020 May 27;14(5):725-7.全文 external link opens in a new window摘要 external link opens in a new window

203. Wu J, Huang J, Zhu G, et al. Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study. BMJ Open Diabetes Res Care. 2020 Jun;8(1).全文 external link opens in a new window摘要 external link opens in a new window

204. Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020 Aug;63(8):1500-15.全文 external link opens in a new window摘要 external link opens in a new window

205. Li H, Tian S, Chen T, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes Metab. 2020 May 29 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

206. Apicella M, Campopiano MC, Mantuano M, et al. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020 Jul 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

207. Halpin DMG, Faner R, Sibila O, et al. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir Med. 2020 May;8(5):436-8.全文 external link opens in a new window摘要 external link opens in a new window

208. Centre for Evidence-Based Medicine; Hartmann-Boyce J, Otunla A, Drake J, et al. Asthma and COVID-19: risks and management considerations. 2020 [internet publication].全文 external link opens in a new window

209. Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. 2020 Jun;167:105941.全文 external link opens in a new window摘要 external link opens in a new window

210. Lieberman-Cribbin W, Rapp J, Alpert N, et al. The impact of asthma on mortality in COVID-19 patients. Chest. 2020 Jun 6 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

211. Zhu Z, Hasegawa K, Ma B, et al. Association of asthma and its genetic predisposition with the risk of severe COVID-19. J Allergy Clin Immunol. 2020 Jun 6 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

212. Grandbastien M, Piotin A, Godet J, et al. SARS-CoV-2 pneumonia in hospitalized asthmatic patients did not induce severe exacerbation. J Allergy Clin Immunol Pract. 2020 Jun 27 [Epub ahead of print].摘要 external link opens in a new window

213. Castro-Rodriguez JA, Forno E. Asthma and COVID-19 in children: a systematic review and call for data. Pediatr Pulmonol. 2020 Jun 18 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

214. Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med. 2020 Jul 10;:1-9.全文 external link opens in a new window摘要 external link opens in a new window

215. Yu J Ouyang W, Chua ML, et al. SARS-CoV-2 transmission in patients with cancer at a tertiary care hospital in Wuhan, China. JAMA Oncol. 2020 Mar 25;6(7):1108-10.全文 external link opens in a new window摘要 external link opens in a new window

216. Tian Y, Qiu X, Wang C, et al. Cancer associates with risk and severe events of COVID-19: a systematic review and meta-analysis. Int J Cancer. 2020 Jul 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

217. Ofori-Asenso R, Ogundipe O, Agyeman AA, et al. Cancer is associated with severe disease in COVID-19 patients: a systematic review and meta-analysis. Ecancermedicalscience. 2020 May 18;14:1047.全文 external link opens in a new window摘要 external link opens in a new window

218. Tian J, Yuan X, Xiao J, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020 May 29;21(7):893-903.全文 external link opens in a new window摘要 external link opens in a new window

219. Giannakoulis VG, Papoutsi E, Siempos II. Effect of cancer on clinical outcomes of patients with COVID-19: a meta-analysis of patient data. JCO Glob Oncol. 2020 Jun;6:799-808.全文 external link opens in a new window摘要 external link opens in a new window

220. Dai M, Liu D, Liu M, et al. Patients with cancer appear more vulnerable to SARS-COV-2: a multi-center study during the COVID-19 outbreak. Cancer Discov. 2020 Jun;10(6):783-91.全文 external link opens in a new window摘要 external link opens in a new window

221. Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020 Jun 20;395(10241):1907-18.全文 external link opens in a new window摘要 external link opens in a new window

222. Lee LYW, Cazier JB, Starkey T, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet. 2020 Jun 20;395(10241):1919-26.全文 external link opens in a new window摘要 external link opens in a new window

223. Yang K, Sheng Y, Huang C, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020 May 29;21(7):904-13.全文 external link opens in a new window摘要 external link opens in a new window

224. Boulad F, Kamboj M, Bouvier N, et al. COVID-19 in children with cancer in New York City. JAMA Oncol. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

225. Afshar ZM, Dayani M, Naderi M, et al. Fatality rate of COVID-19 in patients with malignancies: a systematic review and meta-analysis. J Infect. 2020 May 28 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

226. Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: a systematic review and meta-analysis. J Med Virol. 2020 Jun 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

227. Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020 Jul;8(7):562-4.全文 external link opens in a new window摘要 external link opens in a new window

228. Földi M, Farkas N, Kiss S, et al. Obesity is a risk factor for developing critical condition in COVID-19 patients: a systematic review and meta-analysis. Obes Rev. 2020 Jul 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

229. Anderson MR, Geleris J, Anderson DR, et al. Body mass index and risk for intubation or death in SARS-CoV-2 infection. Ann Intern Med. 2020 Jul 29 [Epub ahead of print].全文 external link opens in a new window

230. Lighter J, Phillips M, Hochman S, et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin Infect Dis. 2020 Apr 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

231. Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet. 2020 May 16;395(10236):1544-5.全文 external link opens in a new window摘要 external link opens in a new window

232. Ong SWX, Young BE, Leo YS, et al. Association of higher body mass index (BMI) with severe coronavirus disease 2019 (COVID-19) in younger patients. Clin Infect Dis. 2020 May 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

233. Klang E, Kassim G, Soffer S, et al. Morbid obesity as an independent risk factor for COVID‐19 mortality in hospitalized patients younger than 50. Obesity (Silver Spring). 2020 May 23 [Epub ahead of print].摘要 external link opens in a new window

234. Bhasin A, Nam H, Yeh C, et al. Is BMI higher in younger patients with COVID-19? Association between BMI and COVID-19 hospitalization by age. Obesity (Silver Spring). 2020 Jul 1 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

235. Savasi VM, Parisi F, Patanè L, et al. Clinical findings and disease severity in hospitalized pregnant women with coronavirus disease 2019 (COVID-19). Obstet Gynecol. 2020 May 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

236. Zachariah P, Johnson CL, Halabi KC, et al. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children's hospital in New York City, New York. JAMA Pediatr. 2020 Jun 3:e202430.全文 external link opens in a new window摘要 external link opens in a new window

237. Panepinto JA, Brandow A, Mucalo L, et al. Coronavirus disease among persons with sickle cell disease, United States, March 20 – May 21, 2020. Emerg Infect Dis. 2020 Jul 8;26(10).全文 external link opens in a new window摘要 external link opens in a new window

238. Hussain FA, Njoku FU, Saraf SL, et al. COVID-19 infection in patients with sickle cell disease. Br J Haematol. 2020 Jun;189(5):851-2.全文 external link opens in a new window摘要 external link opens in a new window

239. Nur E, Gaartman AE, van Tuijn CFJ, et al. Vaso-occlusive crisis and acute chest syndrome in sickle cell disease due to 2019 novel coronavirus disease (COVID-19). Am J Hematol. 2020 Jun;95(6):725-6.全文 external link opens in a new window摘要 external link opens in a new window

240. Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: initial report from the US epicenter. Am J Transplant. 2020 Jul;20(7):1800-8.全文 external link opens in a new window摘要 external link opens in a new window

241. Zhu L, Gong N, Liu B, et al. Coronavirus disease 2019 pneumonia in immunosuppressed renal transplant recipients: a summary of 10 confirmed cases in Wuhan, China. Eur Urol. 2020 Jun;77(6):748-54.全文 external link opens in a new window摘要 external link opens in a new window

242. Akalin E, Azzi Y, Bartash R, et al. Covid-19 and kidney transplantation. N Engl J Med. 2020 Jun 18;382(25):2475-7.全文 external link opens in a new window摘要 external link opens in a new window

243. Columbia University Kidney Transplant Program. Early description of coronavirus 2019 disease in kidney transplant recipients in New York. J Am Soc Nephrol. 2020 Jun;31(6):1150-6.全文 external link opens in a new window摘要 external link opens in a new window

244. Banerjee D, Popoola J, Shah S, et al. COVID-19 infection in kidney transplant recipients. Kidney Int. 2020 Jun;97(6):1076-82.全文 external link opens in a new window摘要 external link opens in a new window

245. Latif F, Farr MA, Clerkin KJ, et al. Characteristics and outcomes of recipients of heart transplant with coronavirus disease 2019. JAMA Cardiol. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

246. Karanasos A, Aznaouridis K, Latsios G, et al. Impact of smoking status on disease severity and mortality of hospitalized patients with COVID-19 infection: a systematic review and meta-analysis. Nicotine Tob Res. 2020 Jun 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

247. Patanavanich R, Glantz SA. Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine Tob Res. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

248. Farsalinos K, Barbouni A, Poulas K, et al. Current smoking, former smoking, and adverse outcome among hospitalized COVID-19 patients: a systematic review and meta-analysis. Ther Adv Chronic Dis. 2020 Jun 25;11:2040622320935765.全文 external link opens in a new window摘要 external link opens in a new window

249. Cai G, Bossé Y, Xiao F, et al. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020 Jun 15;201(12):1557-9.全文 external link opens in a new window摘要 external link opens in a new window

250. World Health Organization. Smoking and COVID-19: scientific brief. 2020 [internet publication].全文 external link opens in a new window

251. Qin C, Zhou L, Hu Z, et al. Clinical characteristics and outcomes of COVID-19 patients with a history of stroke in Wuhan, China. Stroke. 2020 Jul;51(7):2219-23.全文 external link opens in a new window摘要 external link opens in a new window

252. Singh S, Khan A. Clinical characteristics and outcomes of COVID-19 among patients with pre-existing liver disease in United States: a multi-center research network study. Gastroenterology. 2020 May 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

253. Qi X, Wang J, Li X, et al. Clinical course of COVID-19 in patients with pre-existing decompensated cirrhosis: initial report from China. Hepatol Int. 2020 Jul;14(4):478-82.全文 external link opens in a new window摘要 external link opens in a new window

254. Youssef M, Hussein M, Attia AS, et al. COVID-19 and liver dysfunction: a systematic review and meta-analysis of retrospective studies. J Med Virol. 2020 May 23 [Epub ahead of print].摘要 external link opens in a new window

255. Iavarone M, D'Ambrosio R, Soria A, et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J Hepatol. 2020 Jun 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

256. Kunutsor SK, Laukkanen JA. Hepatic manifestations and complications of COVID-19: a systematic review and meta-analysis. J Infect. 2020 Jun 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

257. Ji D, Qin E, Xu J, et al. Non-alcoholic fatty liver diseases in patients with COVID-19: a retrospective study. J Hepatol. 2020 Apr 8;73(2):451-3.全文 external link opens in a new window摘要 external link opens in a new window

258. Sharma P, Kumar A. Metabolic dysfunction associated fatty liver disease increases risk of severe Covid-19. Diabetes Metab Syndr. 2020 Jun 10;14(5):825-7.全文 external link opens in a new window摘要 external link opens in a new window

259. Targher G, Mantovani A, Byrne CD, et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated fatty liver disease and increased fibrosis scores. Gut. 2020 Aug;69(8):1545-7.全文 external link opens in a new window摘要 external link opens in a new window

260. Zhou YJ, Zheng KI, Wang XB, et al. Younger patients with MAFLD are at increased risk of severe COVID-19 illness: a multicenter preliminary analysis. J Hepatol. 2020 Apr 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

261. Doglietto F, Vezzoli M, Gheza F, et al. Factors associated with surgical mortality and complications among patients with and without coronavirus disease 2019 (COVID-19) in Italy. JAMA Surg. 2020 Jun 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

262. Lei S, Jiang F, Su W, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. 2020 Apr 5:100331.全文 external link opens in a new window摘要 external link opens in a new window

263. COVIDSurg Collaborative. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lancet. 2020 Jul 4;396(10243):27-38.全文 external link opens in a new window摘要 external link opens in a new window

264. Singh S, Khan A, Chowdhry M, et al. Risk of severe COVID-19 in patients with inflammatory bowel disease in United States: a multicenter research network study. Gastroenterology. 2020 Jun 6 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

265. Gianfrancesco M, Hyrich KL, Al-Adely S, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2020 Jul;79(7):859-66.全文 external link opens in a new window摘要 external link opens in a new window

266. Karmen-Tuohy S, Carlucci PM, Zervou FN, et al. Outcomes among HIV-positive patients hospitalized with COVID-19. J Acquir Immune Defic Syndr. 2020 Jun 12 [Epub ahead of print].摘要 external link opens in a new window

267. Cooper TJ, Woodward BL, Alom S, et al. Coronavirus disease 2019 (COVID-19) outcomes in HIV/AIDS patients: a systematic review. HIV Med. 2020 Jul 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

268. Centre for Evidence-Based Medicine; Hoang U, Jones NR. Is there an association between exposure to air pollution and severity of COVID-19 infection? 2020 [internet publication].全文 external link opens in a new window

269. Conticini E, Frediani B, Caro D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut. 2020 Apr 4:114465.全文 external link opens in a new window摘要 external link opens in a new window

270. Xu H, Yan C, Fu Q, et al. Possible environmental effects on the spread of COVID-19 in China. Sci Total Environ. 2020 May 7;731:139211.全文 external link opens in a new window摘要 external link opens in a new window

271. Li H, Xu XL, Dai DW, et al. Air pollution and temperature are associated with increased COVID-19 incidence: a time series study. Int J Infect Dis. 2020 Jun 2;97:278-82.全文 external link opens in a new window摘要 external link opens in a new window

272. Frontera A, Cianfanelli L, Vlachos K, et al. Severe air pollution links to higher mortality in COVID-19 patients: the “double-hit” hypothesis. J Infect. 2020 May 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

273. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci Total Environ. 2020 Apr 11;726:138605.全文 external link opens in a new window摘要 external link opens in a new window

274. Wu X, Nethery RC, Sabath BM, et al; medRxiv. Exposure to air pollution and COVID-19 mortality in the United States: a nationwide cross-sectional study. 2020 [internet publication].全文 external link opens in a new window

275. Sajadi MM, Habibzadeh P, Vintzileos A, et al. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020 Jun 1;3(6):e2011834.全文 external link opens in a new window摘要 external link opens in a new window

276. Centre for Evidence-Based Medicine; Spencer EA, Brassey J, Jefferson T, et al. Environmental weather conditions and influence on transmission of SARS-CoV-2. 2020 [internet publication].全文 external link opens in a new window

277. Yao Y, Pan J, Liu Z, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur Respir J. 2020 May 7;55(5):2000517.全文 external link opens in a new window摘要 external link opens in a new window

278. Baker RE, Yang W, Vecchi GA, et al. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science. 2020 Jul 17;369(6501):315-9.全文 external link opens in a new window摘要 external link opens in a new window

279. Sehra ST, Salciccioli JD, Wiebe DJ, et al. Maximum daily temperature, precipitation, ultra-violet light and rates of transmission of SARS-Cov-2 in the United States. Clin Infect Dis. 2020 May 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

280. Centre for Evidence-Based Medicine; Heneghan C, Jefferson T. Effect of latitude on COVID-19. 2020 [internet publication].全文 external link opens in a new window

281. Whittemore PB. COVID-19 fatalities, latitude, sunlight, and vitamin D. Am J Infect Control. 2020 Jun 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

282. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020 Jul 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

283. Lau FH, Majumder R, Torabi R, et al; medRxiv. Vitamin D insufficiency is prevalent in severe COVID-19. 2020 [internet publication].全文 external link opens in a new window

284. Rhodes JM, Subramanian S, Laird E, et al. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther. 2020 Jun;51(12):1434-7.全文 external link opens in a new window摘要 external link opens in a new window

285. Panarese A, Shahini E. Letter: Covid-19, and vitamin D. Aliment Pharmacol Ther. 2020 May;51(10):993-5.全文 external link opens in a new window摘要 external link opens in a new window

286. Garg M, Al-Ani A, Mitchell H, et al. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North – supports vitamin D as a factor determining severity. Authors' reply. Aliment Pharmacol Ther. 2020 Jun;51(12):1438-9.全文 external link opens in a new window摘要 external link opens in a new window

287. Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med Drug Discov. 2020 Apr 29:100041.全文 external link opens in a new window摘要 external link opens in a new window

288. Goldstein MR, Poland GA, Graeber CW. Are certain drugs associated with enhanced mortality in COVID-19? QJM. 2020 Jul 1;113(7):509-10.全文 external link opens in a new window摘要 external link opens in a new window

289. Mehta N, Kalra A, Nowacki AS, et al. Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 May 5 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

290. Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N Engl J Med. 2020 Jun 18;382(25):2441-8.全文 external link opens in a new window摘要 external link opens in a new window

291. Pirola CJ, Sookoian S. Estimation of RAAS-inhibitor effect on the COVID-19 outcome: a meta-analysis. J Infect. 2020 May 28 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

292. Fosbøl EL, Butt JH, Østergaard L, et al. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality. JAMA. 2020 Jun 19;324(2):168-77.全文 external link opens in a new window摘要 external link opens in a new window

293. National Institute for Health and Care Excellence. COVID-19 rapid evidence summary: angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) in people with or at risk of COVID-19. 2020 [internet publication].全文 external link opens in a new window

294. American Heart Association; Heart Failure Society of America; American College of Cardiology. Patients taking ACE-i and ARBs who contract COVID-19 should continue treatment, unless otherwise advised by their physician. 2020 [internet publication].全文 external link opens in a new window

295. European Society of Cardiology Council on Hypertension. Position statement of the ESC Council on Hypertension on ACE-inhibitors and angiotensin receptor blockers. 2020 [internet publication].全文 external link opens in a new window

296. British Cardiovascular Society; British Society for Heart Failure. BSH & BCS joint statement on ACEi or ARB in relation to COVID-19. 2020 [internet publication].全文 external link opens in a new window

297. Zhang XJ, Qin JJ, Cheng X, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 2020 Jun 24 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

298. Emmi G, Bettiol A, Mattioli I, et al. SARS-CoV-2 infection among patients with systemic autoimmune diseases. Autoimmun Rev. 2020 Jul;19(7):102575.全文 external link opens in a new window摘要 external link opens in a new window

299. Favalli EG, Gerosa M, Murgo A, et al. Are patients with systemic lupus erythematosus at increased risk for COVID-19? Ann Rheum Dis. 2020 May 25 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

300. Zhong J, Shen G, Yang H, et al. COVID-19 in patients with rheumatic disease in Hubei province, China: a multicentre retrospective observational study. Lancet Rheumatol. 2020 Jul 3 [Epub ahead of print].全文 external link opens in a new window

301. Liu M, Gao Y, Zhang Y, et al. The association between severe or death COVID-19 and autoimmune disease: a systematic review and meta-analysis. J Infect. 2020 Jun 2 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

302. Fredi M, Cavazzana I, Moschetti L, et al. COVID-19 in patients with rheumatic diseases in northern Italy: a single-centre observational and case–control study. Lancet Rheumatol. 2020 Jun 18 [Epub ahead of print].全文 external link opens in a new window

303. Louapre C, Collongues N, Stankoff B, et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020 Jun 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

304. Aziz M, Fatima R, Haghbin H, et al. The incidence and outcomes of COVID-19 in IBD patients: a rapid review and meta-analysis. Inflamm Bowel Dis. 2020 Jul 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

305. Li J, Wang X, Chen J, et al. Association between ABO blood groups and risk of SARS-CoV-2 pneumonia. Br J Haematol. 2020 Jul;190(1):24-7.全文 external link opens in a new window摘要 external link opens in a new window

306. O'Sullivan JM, Ward S, Fogarty H, et al. More on “Association between ABO blood groups and risk of SARS‐CoV‐2 pneumonia”. Br J Haematol. 2020 Jul;190(1):27-8.全文 external link opens in a new window摘要 external link opens in a new window

307. Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020 Jun 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

308. Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020 May 13;285:198018.全文 external link opens in a new window摘要 external link opens in a new window

309. Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020 May 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

310. Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. Clin Infect Dis. 2020 Jun 4 [Epub ahead of print].摘要 external link opens in a new window

311. World Health Organization. Infection prevention and control during health care when coronavirus disease (‎COVID-19) is suspected or confirmed. 2020 [internet publication].全文 external link opens in a new window

312. Liu M, Cheng SZ, Xu KW, et al. Use of personal protective equipment against coronavirus disease 2019 by healthcare professionals in Wuhan, China: cross sectional study. BMJ. 2020 Jun 10;369:m2195.全文 external link opens in a new window摘要 external link opens in a new window

313. Centre for Evidence-Based Medicine; Greenhalgh T, Chan XH, Khunti K, et al. What is the efficacy of standard face masks compared to respirator masks in preventing COVID-type respiratory illnesses in primary care staff? 2020 [internet publication].全文 external link opens in a new window

314. Razai MS, Doerholt K, Ladhani S, et al. Coronavirus disease 2019 (covid-19): a guide for UK GPs. BMJ. 2020 Mar 5;368:m800.全文 external link opens in a new window摘要 external link opens in a new window

315. World Health Organization. Coronavirus disease (COVID-19) advice for the public. 2020 [internet publication].全文 external link opens in a new window

316. Centers for Disease Control and Prevention. How to protect yourself and others. 2020 [internet publication].全文 external link opens in a new window

317. Centre for Evidence-Based Medicine; Heneghan C, Jefferson T. COVID-19 evidence is lacking for 2 meter distancing. 2020 [internet publication].全文 external link opens in a new window

318. Feng S, Shen C, Xia N, et al. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med. 2020 May;8(5):434-6.全文 external link opens in a new window摘要 external link opens in a new window

319. Mahase E. Covid-19: what is the evidence for cloth masks? BMJ. 2020 Apr 7;369:m1422.全文 external link opens in a new window摘要 external link opens in a new window

320. Chou R, Dana T, Jungbauer R, et al. Masks for prevention of respiratory virus infections, including SARS-CoV-2, in health care and community settings: a living rapid review. Ann Intern Med. 2020 Jul 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

321. Centers for Disease Control and Prevention. Recommendation regarding the use of cloth face coverings, especially in areas of significant community-based transmission. 2020 [internet publication].全文 external link opens in a new window

322. Lazzarino AI, Steptoe A, Hamer M, et al. Covid-19: important potential side effects of wearing face masks that we should bear in mind. BMJ. 2020 May 21;369:m2003.全文 external link opens in a new window摘要 external link opens in a new window

323. MacIntyre CR, Seale H, Dung TC, et al. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open. 2015 Apr 22;5(4):e006577.全文 external link opens in a new window摘要 external link opens in a new window

324. Chughtai AA, Seale H, Macintyre CR. Effectiveness of cloth masks for protection against severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020 Jul 8;26(10).全文 external link opens in a new window摘要 external link opens in a new window

325. Centers for Disease Control and Prevention. Serious adverse health events associated with methanol-based hand sanitizers. 2020 [internet publication].全文 external link opens in a new window

326. Mahmood A, Eqan M, Pervez S, et al. COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Sci Total Environ. 2020 Jun 27;742:140561.全文 external link opens in a new window摘要 external link opens in a new window

327. Quilty BJ, Clifford S, CMMID nCoV working group2, et al. Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Eurosurveillance. 2020 Feb;25(5).全文 external link opens in a new window

328. Hoehl S, Berger A, Kortenbusch M, et al. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. N Engl J Med. 2020 Mar 26;382(13):1278-80.全文 external link opens in a new window摘要 external link opens in a new window

329. Kakimoto K, Kamiya H, Yamagishi T, et al. Initial investigation of transmission of COVID-19 among crew members during quarantine of a cruise ship: Yokohama, Japan, February 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 20;69(11):312-3.全文 external link opens in a new window摘要 external link opens in a new window

330. Mahase E. China coronavirus: what do we know so far? BMJ. 2020 Jan 24;368:m308.全文 external link opens in a new window摘要 external link opens in a new window

331. Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020 Mar 14;395(10227):912-20.全文 external link opens in a new window摘要 external link opens in a new window

332. Nussbaumer-Streit B, Mayr V, Dobrescu AI, et al. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. Cochrane Database Syst Rev. 2020 Apr 8;(4):CD013574.全文 external link opens in a new window摘要 external link opens in a new window

333. Centre for Evidence-Based Medicine; Mahtani KR, Heneghan C, Aronson JK. What is the evidence for social distancing during global pandemics? 2020 [internet publication].全文 external link opens in a new window

334. Lewnard JA, Lo NC. Scientific and ethical basis for social-distancing interventions against COVID-19. Lancet Infect Dis. 2020 Jun;20(6):631-3.全文 external link opens in a new window摘要 external link opens in a new window

335. Koo JR, Cook AR, Park M, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect Dis. 2020 Jun;20(6):678-88.全文 external link opens in a new window摘要 external link opens in a new window

336. Public Health England. Guidance on shielding and protecting people who are clinically extremely vulnerable from COVID-19. 2020 [internet publication].全文 external link opens in a new window

337. Royal College of Paediatrics and Child Health. COVID-19: 'shielding' guidance for children and young people. 2020 [internet publication].全文 external link opens in a new window

338. Mahase E. Covid-19: what do we know so far about a vaccine? BMJ. 2020 Apr 27;369:m1679.全文 external link opens in a new window

339. Padron-Regalado E. Vaccines for SARS-CoV-2: lessons from other coronavirus strains. Infect Dis Ther. 2020 Apr 23;:1-20.全文 external link opens in a new window摘要 external link opens in a new window

340. Hotez PJ, Corry DB, Bottazzi ME. COVID-19 vaccine design: the Janus face of immune enhancement. Nat Rev Immunol. 2020 Jun;20(6):347-8.全文 external link opens in a new window摘要 external link opens in a new window

341. Callaway E. Coronavirus vaccine trials have delivered their first results - but their promise is still unclear. Nature. 2020 May;581(7809):363-4.全文 external link opens in a new window摘要 external link opens in a new window

342. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020 Jun 13;395(10240):1845-54.全文 external link opens in a new window摘要 external link opens in a new window

343. Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020 Jul 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

344. van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

345. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020 Jul 20;:.全文 external link opens in a new window摘要 external link opens in a new window

346. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020 Jul 3;369(6499):77-81.全文 external link opens in a new window摘要 external link opens in a new window

347. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2: preliminary report. N Engl J Med. 2020 Jul 14 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

348. Mulligan MJ, Lyke KE, Kitchin N, et al; medRxiv. The incidence and outcomes of COVID-19 in IBD patients: a rapid review and meta-analysis phase 1/2 study to describe the safety and immunogenicity of a COVID-19 RNA vaccine candidate (BNT162b1) in adults 18 to 55 years of age: interim report. 2020 [internet publication].全文 external link opens in a new window

349. World Health Organization. "Immunity passports" in the context of COVID-19. 2020 [internet publication].全文 external link opens in a new window

350. Kofler N, Baylis F. Ten reasons why immunity passports are a bad idea. Nature. 2020 May;581(7809):379-81.全文 external link opens in a new window摘要 external link opens in a new window

351. Yang BY, Barnard LM, Emert JM, et al. Clinical characteristics of patients with coronavirus disease 2019 (COVID-19) receiving emergency medical services in King County, Washington. JAMA Netw Open. 2020 Jul 1;3(7):e2014549.全文 external link opens in a new window摘要 external link opens in a new window

352. Struyf T, Deeks JJ, Dinnes J, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst Rev. 2020 Jul 7;(7):CD013665.全文 external link opens in a new window摘要 external link opens in a new window

353. Sommer P, Lukovic E, Fagley E, et al. Initial clinical impressions of the critical care of COVID-19 patients in Seattle, New York City, and Chicago. Anesth Analg. 2020 Jul;131(1):55-60.全文 external link opens in a new window摘要 external link opens in a new window

354. Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1,420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med. 2020 Apr 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

355. Matar R, Alrahmani L, Monzer N, et al. Clinical presentation and outcomes of pregnant women with COVID-19: a systematic review and meta-analysis. Clin Infect Dis. 2020 Jun 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

356. Lechien JR, Chetrit A, Chekkoury-Idrissi Y, et al. Parotitis-like symptoms associated with COVID-19, France, March-April 2020. Emerg Infect Dis. 2020 Jun 3;26(9).全文 external link opens in a new window摘要 external link opens in a new window

357. Martín Carreras-Presas C, Amaro Sánchez J, López-Sánchez AF, et al. Oral vesiculobullous lesions associated with SARS-CoV-2 infection. Oral Dis. 2020 May 5 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

358. Marinho PM, Marcos AAA, Romano AC, et al. Retinal findings in patients with COVID-19. Lancet. 2020 May 23;395(10237):1610.全文 external link opens in a new window摘要 external link opens in a new window

359. Wambier CG, Vaño-Galván S, McCoy J, et al. Androgenetic alopecia present in the majority of hospitalized COVID-19 patients: the "Gabrin sign". J Am Acad Dermatol. 2020 May 21;83(2):680-2.全文 external link opens in a new window摘要 external link opens in a new window

360. Lansbury L, Lim B, Baskaran V, et al. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020 May 27 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

361. Langford BJ, So M, Raybardhan S, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020 Jul 22 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

362. Gayam V, Konala VM, Naramala S, et al. Presenting characteristics, comorbidities, and outcomes of patients coinfected with COVID-19 and Mycoplasma pneumoniae in the USA. J Med Virol. 2020 May 25 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

363. Ding Q, Lu P, Fan Y, et al. The clinical characteristics of pneumonia patients co-infected with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol. 2020 Mar 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

364. Cuadrado-Payán E, Montagud-Marrahi E, Torres-Elorza M, et al. SARS-CoV-2 and influenza virus co-infection. Lancet. 2020 May 16;395(10236):e84.全文 external link opens in a new window摘要 external link opens in a new window

365. Assaker R, Colas AE, Julien-Marsollier F, et al. Presenting symptoms of COVID-19 in children: a meta-analysis of published studies. Br J Anaesth. 2020 May 31 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

366. Liguoro I, Pilotto C, Bonanni M, et al. SARS-COV-2 infection in children and newborns: a systematic review. Eur J Pediatr. 2020 Jul;179(7):1029-46.全文 external link opens in a new window摘要 external link opens in a new window

367. Li Y, Wang H, Wang F, et al. Comparison of hospitalized patients with pneumonia caused by COVID-19 and influenza A in children under 5 years. Int J Infect Dis. 2020 Jun 11;98:80-3.全文 external link opens in a new window摘要 external link opens in a new window

368. Cook J, Harman K, Zoica B, et al. Horizontal transmission of severe acute respiratory syndrome coronavirus 2 to a premature infant: multiple organ injury and association with markers of inflammation. Lancet Child Adolesc Health. 2020 Jul;4(7):548-51.全文 external link opens in a new window摘要 external link opens in a new window

369. Shekerdemian LS, Mahmood NR, Wolfe KK, et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr. 2020 May 11 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

370. Lorenz N, Treptow A, Schmidt S, et al. Neonatal early-onset infection with SARS-CoV-2 in a newborn presenting with encephalitic symptoms. Pediatr Infect Dis J. 2020 Aug;39(8):e212.摘要 external link opens in a new window

371. Chacón-Aguilar R, Osorio-Cámara JM, Sanjurjo-Jimenez I, et al. COVID-19: fever syndrome and neurological symptoms in a neonate. An Pediatr (Engl Ed). 2020 Apr 27;92(6):373-4.全文 external link opens in a new window摘要 external link opens in a new window

372. Sinelli MT, Paterlini G, Citterio M, et al. Early neonatal SARS-CoV-2 infection manifesting with hypoxemia requiring respiratory support. Pediatrics. 2020 Jul;146(1):e20201121.全文 external link opens in a new window摘要 external link opens in a new window

373. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020 May;55(5):1169-74.全文 external link opens in a new window摘要 external link opens in a new window

374. Ikeuchi K, Saito M, Yamamoto S, et al. Relative bradycardia in patients with mild-to-moderate coronavirus disease, Japan. Emerg Infect Dis. 2020 Jul 1;26(10).全文 external link opens in a new window摘要 external link opens in a new window

375. Xie J, Tong Z, Guan X, et al. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med. 2020 May;46(5):837-40.全文 external link opens in a new window摘要 external link opens in a new window

376. Royal College of Physicians. NEWS2 and deterioration in COVID-19. 2020 [internet publication].全文 external link opens in a new window

377. Li LQ, Huang T, Wang YQ, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020 Jun;92(6):577-83.全文 external link opens in a new window摘要 external link opens in a new window

378. Zhu J, Zhong Z, Ji P, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020 Apr;8(2).全文 external link opens in a new window摘要 external link opens in a new window

379. Zhang ZL, Hou YL, Li DT, et al. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020 May 23:1-7.全文 external link opens in a new window摘要 external link opens in a new window

380. Wu H, Zhu H, Yuan C, et al. Clinical and immune features of hospitalized pediatric patients with coronavirus disease 2019 (COVID-19) in Wuhan, China. JAMA Netw Open. 2020 Jun 1;3(6):e2010895.全文 external link opens in a new window摘要 external link opens in a new window

381. Henry BM, Benoit SW, de Oliveira MHS, et al. Laboratory abnormalities in children with mild and severe coronavirus disease 2019 (COVID-19): a pooled analysis and review. Clin Biochem. 2020 Jul;81:1-8.全文 external link opens in a new window摘要 external link opens in a new window

382. Kronbichler A, Kresse D, Yoon S, et al. Asymptomatic patients as a source of COVID-19 infections: a systematic review and meta-analysis. Int J Infect Dis. 2020 Jun 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

383. Department of Health and Social Care. Everyone in the United Kingdom with symptoms now eligible for coronavirus tests. 2020 [internet publication].全文 external link opens in a new window

384. Centers for Disease Control and Prevention. Overview of testing for SARS-CoV-2. 2020 [internet publication].全文 external link opens in a new window

385. World Health Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases. 2020 [internet publication].全文 external link opens in a new window

386. Watson J, Whiting PF, Brush JE. Interpreting a covid-19 test result. BMJ. 2020 May 12;369:m1808.全文 external link opens in a new window摘要 external link opens in a new window

387. Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

388. Ruan ZR, Gong P, Han W, et al. A case of 2019 novel coronavirus infected pneumonia with twice negative 2019-nCoV nucleic acid testing within 8 days. Chin Med J (Engl). 2020 Jun 20;133(12):1487-8.摘要 external link opens in a new window

389. Wu X, Cai Y, Huang X, et al. Co-infection with SARS-CoV-2 and influenza A virus in patient with pneumonia, China. Emerg Infect Dis. 2020 Mar 11;26(6).全文 external link opens in a new window摘要 external link opens in a new window

390. World Health Organization. Advice on the use of point-of-care immunodiagnostic tests for COVID-19. 2020 [internet publication].全文 external link opens in a new window

391. Lisboa Bastos M, Tavaziva G, Abidi SK, et al. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ. 2020 Jul 1;370:m2516.全文 external link opens in a new window摘要 external link opens in a new window

392. Centers for Disease Control and Prevention. Interim guidelines for COVID-19 antibody testing. 2020 [internet publication].全文 external link opens in a new window

393. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020 Jun;26(6):845-8.全文 external link opens in a new window摘要 external link opens in a new window

394. Qu J, Wu C, Li X, et al. Profile of IgG and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020 Apr 27 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

395. Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020 Jun 25;(6):CD013652.全文 external link opens in a new window摘要 external link opens in a new window

396. Poon LC, Yang H, Kapur A, et al. Global interim guidance on coronavirus disease 2019 (COVID‐19) during pregnancy and puerperium from FIGO and allied partners: information for healthcare professionals. 2020 [internet publication].全文 external link opens in a new window

397. Song F, Shi N, Shan F, et al. Emerging coronavirus 2019-nCoV pneumonia. Radiology. 2020 Feb 6:200274.全文 external link opens in a new window摘要 external link opens in a new window

398. World Health Organization. Use of chest imaging in COVID-19. 2020 [internet publication].全文 external link opens in a new window

399. British Society of Thoracic Imaging. Thoracic imaging in COVID-19 infection: guidance for the reporting radiologist - version 2. 2020 [internet publication].全文 external link opens in a new window

400. Tavare AN, Braddy A, Brill S, et al. Managing high clinical suspicion COVID-19 inpatients with negative RT-PCR: a pragmatic and limited role for thoracic CT. Thorax. 2020 Jul;75(7):537-8.全文 external link opens in a new window摘要 external link opens in a new window

401. American College of Radiology. ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection. 2020 [internet publication].全文 external link opens in a new window

402. Sun P, Qie S, Liu Z, et al. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis. J Med Virol. 2020 Jun;92(6):612-7.全文 external link opens in a new window摘要 external link opens in a new window

403. Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020 Feb 27 [Epub ahead of print].摘要 external link opens in a new window

404. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020 Apr;20(4):425-34.全文 external link opens in a new window摘要 external link opens in a new window

405. Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020 Apr;80(4):388-93.全文 external link opens in a new window摘要 external link opens in a new window

406. Long C, Xu H, Shen Q, et al. Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020 Mar 25;126:108961.全文 external link opens in a new window摘要 external link opens in a new window

407. Ojha V, Mani A, Pandey NN, et al. CT in coronavirus disease 2019 (COVID-19): a systematic review of chest CT findings in 4410 adult patients. Eur Radiol. 2020 May 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

408. Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin Infect Dis. 2020 Mar 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

409. Kumar J, Meena J, Yadav A, et al. Radiological findings of COVID-19 in children: a systematic review and meta-analysis. J Trop Pediatr. 2020 Jul 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

410. Park GS, Ku K, Baek SH, et al. Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2. J Mol Diagn. 2020 Jun;22(6):729-35.全文 external link opens in a new window摘要 external link opens in a new window

411. Baek YH, Um J, Antigua KJC, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg Microbes Infect. 2020 Apr 20:1-31.全文 external link opens in a new window摘要 external link opens in a new window

412. Lu R, Wu X, Wan Z, et al. A novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Int J Mol Sci. 2020 Apr 18;21(8).全文 external link opens in a new window摘要 external link opens in a new window

413. US Food and Drug Administration. Coronavirus (COVID-19) update: FDA authorizes first antigen test to help in the rapid detection of the virus that causes COVID-19 in patients. 2020 [internet publication].全文 external link opens in a new window

414. Mohamed MFH, Al-Shokri S, Yousaf Z, et al. Frequency of abnormalities detected by point-of-care lung ultrasound in symptomatic COVID-19 patients: systematic review and meta-analysis. Am J Trop Med Hyg. 2020 Jun 2 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

415. Moro F, Buonsenso D, Moruzzi MC, et al. How to perform lung ultrasound in pregnant women with suspected COVID-19 infection. Ultrasound Obstet Gynecol. 2020 May;55(5):593-8.全文 external link opens in a new window摘要 external link opens in a new window

416. Denina M, Scolfaro C, Silvestro E, et al. Lung ultrasound in children with COVID-19. Pediatrics. 2020 Jul;146(1):e20201157.全文 external link opens in a new window摘要 external link opens in a new window

417. Grant MC, Geoghegan L, Arbyn M, et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS One. 2020 Jun 23;15(6):e0234765.全文 external link opens in a new window摘要 external link opens in a new window

418. Tong JY, Wong A, Zhu D, et al. The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2020 May 5:194599820926473.全文 external link opens in a new window摘要 external link opens in a new window

419. Lechien JR, Chiesa-Estomba CM, Hans S, et al. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann Intern Med. 2020 May 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

420. Kaye R, Chang CWD, Kazahaya K, et al. COVID-19 anosmia reporting tool: initial findings. Otolaryngol Head Neck Surg. 2020 Jul;163(1):132-4.全文 external link opens in a new window摘要 external link opens in a new window

421. Eliezer M, Hautefort C, Hamel AL, et al. Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020 Apr 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

422. Medicines and Healthcare products Regulatory Agency. Central alerting system: COVID-19 general case definition change. 2020 [internet publication].全文 external link opens in a new window

423. Centre for Evidence-Based Medicine; Nunan D, et al. Loss of smell and taste as symptoms of COVID-19: what does the evidence say? 2020 [internet publication].全文 external link opens in a new window

424. Boscolo-Rizzo P, Borsetto D, Fabbris C, et al. Evolution of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol Head Neck Surg. 2020 Jul 2 [Epub ahead of print].摘要 external link opens in a new window

425. Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020 Jul;5(7):667-78.全文 external link opens in a new window摘要 external link opens in a new window

426. Sultan S, Altayar O, Siddique SM, et al. AGA Institute rapid review of the GI and liver manifestations of COVID-19, meta-analysis of international data, and recommendations for the consultative management of patients with COVID-19. Gastroenterology. 2020 May 11;159(1):320-34.全文 external link opens in a new window摘要 external link opens in a new window

427. Chen A, Agarwal A, Ravindran N, et al. Are gastrointestinal symptoms specific for COVID-19 infection? A prospective case-control study from the United States. Gastroenterology. 2020 May 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

428. Guotao L, Xingpeng Z, Zhihui D, et al. SARS-CoV-2 infection presenting with hematochezia. Med Mal Infect. 2020 May;50(3):293-6.全文 external link opens in a new window摘要 external link opens in a new window

429. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020 Jun 4;382(23):2268-70.全文 external link opens in a new window摘要 external link opens in a new window

430. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020 Mar 26;368:m1091.全文 external link opens in a new window摘要 external link opens in a new window

431. De Giorgi V, Recalcati S, Jia Z, et al. Cutaneous manifestations related to coronavirus disease 2019 (COVID-19): a prospective study from China and Italy. J Am Acad Dermatol. 2020 Aug;83(2):674-5.全文 external link opens in a new window摘要 external link opens in a new window

432. Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J Eur Acad Dermatol Venereol. 2020 May;34(5):e212-3.全文 external link opens in a new window摘要 external link opens in a new window

433. Joob B, Wiwanitkit V. COVID-19 can present with a rash and be mistaken for Dengue. J Am Acad Dermatol. 2020 May;82(5):e177.全文 external link opens in a new window摘要 external link opens in a new window

434. Hunt M, Koziatek C. A case of COVID-19 pneumonia in a young male with full body rash as a presenting symptom. Clin Pract Cases Emerg Med. 2020 Mar 28;4(2):219-21.全文 external link opens in a new window摘要 external link opens in a new window

435. Fernandez-Nieto D, Jimenez-Cauhe J, Suarez-Valle A, et al. Characterization of acute acral skin lesions in nonhospitalized patients: a case series of 132 patients during the COVID-19 outbreak. J Am Acad Dermatol. 2020 Jul;83(1):e61-3.全文 external link opens in a new window摘要 external link opens in a new window

436. Diaz-Guimaraens B, Dominguez-Santas M, Suarez-Valle A, et al. Petechial skin rash associated with severe acute respiratory syndrome coronavirus 2 infection. JAMA Dermatol. 2020 Apr 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

437. Ehsani AH, Nasimi M, Bigdelo Z. Pityriasis rosea as a cutaneous manifestation of COVID-19 infection. J Eur Acad Dermatol Venereol. 2020 May 2 [Epub ahead of print].摘要 external link opens in a new window

438. Marzano AV, Genovese G, Fabbrocini G, et al. Varicella-like exanthem as a specific COVID-19-associated skin manifestation: multicenter case series of 22 patients. J Am Acad Dermatol. 2020 Jul;83(1):280-5.全文 external link opens in a new window摘要 external link opens in a new window

439. Sanchez A, Sohier P, Benghanem S, et al. Digitate papulosquamous eruption associated with severe acute respiratory syndrome coronavirus 2 infection. JAMA Dermatol. 2020 Apr 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

440. Torrelo A, Andina D, Santonja C, et al. Erythema multiforme-like lesions in children and COVID-19. Pediatr Dermatol. 2020 May;37(3):442-6.全文 external link opens in a new window摘要 external link opens in a new window

441. Galván Casas C, Català A, Carretero Hernández G, et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol. 2020 Jul;183(1):71-7.全文 external link opens in a new window摘要 external link opens in a new window

442. Piccolo V, Neri I, Filippeschi C, et al. Chilblain-like lesions during COVID-19 epidemic: a preliminary study on 63 patients. J Eur Acad Dermatol Venereol. 2020 Jul;34(7):e291-3.全文 external link opens in a new window摘要 external link opens in a new window

443. Kolivras A, Dehavay F, Delplace D, et al. Coronavirus (COVID-19) infection-induced chilblains: a case report with histopathologic findings. JAAD Case Rep. 2020 Apr 18;6(6):489-92.全文 external link opens in a new window摘要 external link opens in a new window

444. Colonna C, Monzani NA, Rocchi A, et al. Chilblains-like lesions in children following suspected Covid-19 infection. Pediatr Dermatol. 2020 May;37(3):437-40.全文 external link opens in a new window摘要 external link opens in a new window

445. Roca-Ginés J, Torres-Navarro I, Sánchez-Arráez J, et al. Assessment of acute acral lesions in a case series of children and adolescents during the COVID-19 pandemic. JAMA Dermatol. 2020 Jun 25 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

446. Herman A, Peeters C, Verroken A, et al. Evaluation of chilblains as a manifestation of the COVID-19 pandemic. JAMA Dermatol. 2020 Jun 25 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

447. Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei province, China. JAMA Ophthalmol. 2020 Mar 31;138(5):575-8.全文 external link opens in a new window摘要 external link opens in a new window

448. Scalinci SZ, Trovato Battagliola E. Conjunctivitis can be the only presenting sign and symptom of COVID-19. IDCases. 2020;20:e00774.全文 external link opens in a new window摘要 external link opens in a new window

449. Casey K, Iteen A, Nicolini R, et al. COVID-19 pneumonia with hemoptysis: acute segmental pulmonary emboli associated with novel coronavirus infection. Am J Emerg Med. 2020 Jul;38(7):1544.全文 external link opens in a new window摘要 external link opens in a new window

450. Kermali M, Khalsa RK, Pillai K, et al. The role of biomarkers in diagnosis of COVID-19: a systematic review. Life Sci. 2020 May 13:117788.全文 external link opens in a new window摘要 external link opens in a new window

451. Liu Y, Du X, Chen J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020 Apr 10 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

452. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol. 2020 Apr 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

453. Huang W, Berube J, McNamara M, et al. Lymphocyte subset counts in COVID-19 patients: a meta-analysis. Cytometry A. 2020 Jun 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

454. Chen W, Li Z, Yang B, et al. Delayed-phase thrombocytopenia in patients of coronavirus disease 2019 (COVID-19). Br J Haematol. 2020 May 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

455. Kunutsor SK, Laukkanen JA. Markers of liver injury and clinical outcomes in COVID-19 patients: a systematic review and meta-analysis. J Infect. 2020 May 28 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

456. Aziz M, Fatima R, Lee-Smith W, et al. The association of low serum albumin level with severe COVID-19: a systematic review and meta-analysis. Crit Care. 2020 May 26;24(1):255.全文 external link opens in a new window摘要 external link opens in a new window

457. Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020 Jun 1;3(6):e2011122.全文 external link opens in a new window摘要 external link opens in a new window

458. Liu J, Han P, Wu J, et al. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J Infect Public Health. 2020 Jun 22 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

459. Ceriello A. Hyperglycemia and the worse prognosis of COVID-19: why a fast blood glucose control should be mandatory. Diabetes Res Clin Pract. 2020 Apr 29;163:108186.全文 external link opens in a new window摘要 external link opens in a new window

460. Bode B, Garrett V, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020 May 9:1932296820924469.全文 external link opens in a new window摘要 external link opens in a new window

461. Iacobellis G, Penaherrera CA, Bermudez LE, et al. Admission hyperglycemia and radiological findings of SARS-CoV2 in patients with and without diabetes. Diabetes Res Clin Pract. 2020 May 1;164:108185.全文 external link opens in a new window摘要 external link opens in a new window

462. Di Micco P, Russo V, Carannante N, et al. Clotting factors in COVID-19: epidemiological association and prognostic values in different clinical presentations in an Italian cohort. J Clin Med. 2020 May 7;9(5).全文 external link opens in a new window摘要 external link opens in a new window

463. Shah S, Shah K, Patel SB, et al. Elevated D-dimer levels are associated with increased risk of mortality in COVID-19: a systematic review and meta-analysis. Cardiol Rev. 2020 Jul 2 [Epub ahead of print].摘要 external link opens in a new window

464. Leonard-Lorant I, Delabranche X, Severac F, et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology. 2020 Apr 23:201561.全文 external link opens in a new window摘要 external link opens in a new window

465. Mucha SR, Dugar S, McCrae K, et al. Coagulopathy in COVID-19. Cleve Clin J Med. 2020 May 14 [Epub ahead of print].摘要 external link opens in a new window

466. Luo X, Zhou W, Yan X, et al. Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis. 2020 May 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

467. Wang C, Fei D, Li X, et al. IL-6 may be a good biomarker for earlier detection of COVID-19 progression. Intensive Care Med. 2020 May 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

468. Soraya GV, Ulhaq ZS. Interleukin-6 levels in children developing SARS-CoV-2 infection. Pediatr Neonatol. 2020 May 4 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

469. Han H, Xie L, Liu R, et al. Analysis of heart injury laboratory parameters in 273 COVID-19 patients in one hospital in Wuhan, China. J Med Virol. 2020 Mar 31 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

470. Aboughdir M, Kirwin T, Abdul Khader A, et al. Prognostic value of cardiovascular biomarkers in COVID-19: a review. Viruses. 2020 May 11;12(5).全文 external link opens in a new window摘要 external link opens in a new window

471. Zeng F, Huang Y, Guo Y, et al. Association of inflammatory markers with the severity of COVID-19: a meta-analysis. Int J Infect Dis. 2020 May 18 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

472. National Institute for Health and Care Excellence. COVID-19 rapid guideline: antibiotics for pneumonia in adults in hospital. 2020 [internet publication].全文 external link opens in a new window

473. Metlay JP, Waterer GW. Treatment of community-acquired pneumonia during the coronavirus disease 2019 (COVID-19) pandemic. Ann Intern Med. 2020 May 7 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

474. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-4.全文 external link opens in a new window摘要 external link opens in a new window

475. Kim H, Hong H, Yoon SH. Diagnostic performance of CT and reverse transcriptase-polymerase chain reaction for coronavirus disease 2019: a meta-analysis. Radiology. 2020 Apr 17:201343.全文 external link opens in a new window摘要 external link opens in a new window

476. US Food and Drug Administration. Coronavirus (COVID-19) update: FDA issues first emergency use authorization for point of care diagnostic. 2020 [internet publication].全文 external link opens in a new window

477. Riccò M, Ferraro P, Gualerzi G, et al. Point-of-care diagnostic tests for detecting SARS-CoV-2 antibodies: a systematic review and meta-analysis of real-world data. J Clin Med. 2020 May 18;9(5):E1515.全文 external link opens in a new window摘要 external link opens in a new window

478. Omer SB, Malani P, Del Rio C. The COVID-19 pandemic in the US: a clinical update. JAMA. 2020 Apr 6 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

479. Azzi L, Carcano G, Gianfagna F, et al. Saliva is a reliable tool to detect SARS-CoV-2. J Infect. 2020 Apr 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

480. Williams E, Bond K, Zhang B, et al. Saliva as a non-invasive specimen for detection of SARS-CoV-2. J Clin Microbiol. 2020 Apr 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

481. US Food and Drug Administration. Emergency use authorization: coronavirus disease 2019 (COVID-19) EUA information. 2020 [internet publication].全文 external link opens in a new window

482. US Food and Drug Administration. Coronavirus (COVID-19) update: FDA authorizes first test for patient at-home sample collection. 2020 [internet publication].全文 external link opens in a new window

483. Lv M, Wang M, Yang N, et al. Chest computed tomography for the diagnosis of patients with coronavirus disease 2019 (COVID-19): a rapid review and meta-analysis. Ann Transl Med. 2020 May;8(10):622.全文 external link opens in a new window摘要 external link opens in a new window

484. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020 Feb 26:200642.全文 external link opens in a new window摘要 external link opens in a new window

485. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing suspected or confirmed pneumonia in adults in the community. 2020 [internet publication].全文 external link opens in a new window

486. Centre for Evidence-Based Medicine; Heneghan C, Pluddemann A, Mahtani KR. Differentiating viral from bacterial pneumonia. 2020 [internet publication].全文 external link opens in a new window

487. Hani C, Trieu NH, Saab I, et al. COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagn Interv Imaging. 2020 May;101(5):263-8.全文 external link opens in a new window摘要 external link opens in a new window

488. Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J, et al. Acute-onset smell and taste disorders in the context of Covid-19: a pilot multicenter PCR-based case-control study. Eur J Neurol. 2020 Apr 22 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

489. Liu M, Zeng W, Wen Y, et al. COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia. Eur Radiol. 2020 May 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

490. Yin Z, Kang Z, Yang D, et al. A comparison of clinical and chest CT findings in patients with influenza A (H1N1) virus infection and coronavirus disease (COVID-19). AJR Am J Roentgenol. 2020 May 26:1-7.全文 external link opens in a new window摘要 external link opens in a new window

491. Luo Y, Yuan X, Xue Y, et al. Using the diagnostic model based on routine laboratory tests to distinguish patients infected with SARS-CoV-2 from those infected with influenza virus. Int J Infect Dis. 2020 May 1;95:436-40.全文 external link opens in a new window摘要 external link opens in a new window

492. Zarei F, Reza J, Sefidbakht S, et al. Aspiration pneumonia or COVID-19 infection: a diagnostic challenge. Acad Radiol. 2020 May 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

493. National Institute for Health and Care Excellence. COVID-19 rapid guideline: delivery of systemic anticancer treatments. 2020 [internet publication].全文 external link opens in a new window

494. World Health Organization. Home care for patients with COVID-19 presenting with mild symptoms and management of their contacts. 2020 [internet publication].全文 external link opens in a new window

495. World Health Organization. Updated WHO recommendations for international traffic in relation to COVID-19 outbreak. February 2020 [internet publication].全文 external link opens in a new window

496. Arima Y, Shimada T, Suzuki M, et al. Severe acute respiratory syndrome coronavirus 2 infection among returnees to Japan from Wuhan, China, 2020. Emerg Infect Dis. 2020 Apr 10;26(7).全文 external link opens in a new window摘要 external link opens in a new window

497. Kwon KT, Ko JH, Shin H, et al. Drive-through screening center for COVID-19: a safe and efficient screening system against massive community outbreak. J Korean Med Sci. 2020 Mar 23;35(11):e123.全文 external link opens in a new window摘要 external link opens in a new window

498. Medicines and Healthcare products Regulatory Agency. Don’t rely on temperature screening products for detection of coronavirus (COVID-19), says MHRA. 2020 [internet publication].全文 external link opens in a new window

499. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020 May 22;369:m1966.全文 external link opens in a new window摘要 external link opens in a new window

500. Götzinger F, Santiago-García B, Noguera-Julián A, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020 Jun 25 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

501. Abate SM, Ahmed Ali S, Mantfardo B, et al. Rate of intensive care unit admission and outcomes among patients with coronavirus: a systematic review and meta-analysis. PLoS One. 2020 Jul 10;15(7):e0235653.全文 external link opens in a new window摘要 external link opens in a new window

502. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle region: case series. N Engl J Med. 2020 Mar 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

503. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ. 2020 May 29;369:m1996.全文 external link opens in a new window摘要 external link opens in a new window

504. Centers for Disease Control and Prevention. Discontinuation of isolation for persons with COVID-19 not in healthcare settings. 2020 [internet publication].全文 external link opens in a new window

505. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020 May;46(5):854-87.全文 external link opens in a new window摘要 external link opens in a new window

506. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing symptoms (including at the end of life) in the community. 2020 [internet publication].全文 external link opens in a new window

507. European Medicines Agency. EMA gives advice on the use of non-steroidal anti-inflammatories for COVID-19. 2020 [internet publication].全文 external link opens in a new window

508. US Food and Drug Administration. FDA advises patients on use of non-steroidal anti-inflammatory drugs (NSAIDs) for COVID-19. 2020 [internet publication].全文 external link opens in a new window

509. Little P. Non-steroidal anti-inflammatory drugs and covid-19. BMJ. 2020 Mar 27;368:m1185.全文 external link opens in a new window摘要 external link opens in a new window

510. Medicines and Healthcare products Regulatory Agency; Commission on Human Medicines. Commission on Human Medicines advice on ibuprofen and coronavirus (COVID-19). 2020 [internet publication].全文 external link opens in a new window

511. World Health Organization. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with COVID-19. 2020 [internet publication].全文 external link opens in a new window

512. National Institute for Health and Care Excellence. COVID-19 rapid evidence summary: acute use of non-steroidal anti-inflammatory drugs (NSAIDs) for people with or at risk of COVID-19. 2020 [internet publication].全文 external link opens in a new window

513. Whitcroft KL, Hummel T. Olfactory dysfunction in COVID-19: diagnosis and management. JAMA. 2020 May 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

514. Centers for Disease Control and Prevention. Discontinuation of transmission-based precautions and disposition of patients with COVID-19 in healthcare settings (interim guidance). 2020 [internet publication].全文 external link opens in a new window

515. Hewitt J, Carter B, Vilches-Moraga A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health. 2020 Jun 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

516. National Institute for Health and Care Excellence. COVID-19 rapid guideline: critical care in adults. 2020 [internet publication].全文 external link opens in a new window

517. Centre for Evidence-Based Medicine; Allsop M, Ziegler L, Fu Y, et al. Is oxygen an effective treatment option to alleviate the symptoms of breathlessness for patients dying with COVID-19 and what are the potential harms? 2020 [internet publication].全文 external link opens in a new window

518. NHS England. Clinical guide for the optimal use of oxygen therapy during the coronavirus pandemic. 2020 [internet publication].全文 external link opens in a new window

519. Dondorp AM, Hayat M, Aryal D, et al. Respiratory support in novel coronavirus disease (COVID-19) patients, with a focus on resource-limited settings. Am J Trop Med Hyg. 2020 Apr 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

520. Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, non-intubated patients in the emergency department: a single ED's experience during the COVID-19 pandemic. Acad Emerg Med. 2020 May;27(5):375-8.全文 external link opens in a new window摘要 external link opens in a new window

521. Ng Z, Tay WC, Ho CHB. Awake prone positioning for non-intubated oxygen dependent COVID-19 pneumonia patients. Eur Respir J. 2020 May 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

522. Golestani-Eraghi M, Mahmoodpoor A. Early application of prone position for management of Covid-19 patients. J Clin Anesth. 2020 May 26;66:109917.全文 external link opens in a new window摘要 external link opens in a new window

523. Thompson AE, Ranard BL, Wei Y, et al. Prone positioning in awake, nonintubated patients with COVID-19 hypoxemic respiratory failure. JAMA Intern Med. 2020 Jun 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

524. Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med. 2020 Jun 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

525. Mojoli F, Mongodi S, Orlando A, et al. Our recommendations for acute management of COVID-19. Crit Care. 2020 May 8;24(1):207.全文 external link opens in a new window摘要 external link opens in a new window

526. Centre for Evidence-Based Medicine; Jones L, Candy B, Roberts N, et al. How can healthcare workers adapt non-pharmacological treatment – whilst maintaining safety – when treating people with COVID-19 and delirium? 2020 [internet publication].全文 external link opens in a new window

527. Barnes GD, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the Anticoagulation Forum. J Thromb Thrombolysis. 2020 May 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

528. Moores LK, Tritschler T, Brosnahan S, et al. Prevention, diagnosis and treatment of venous thromboembolism in patients with COVID-19: CHEST guideline and expert panel report. Chest. 2020 Jun 2 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

529. American Society Of Hematology. COVID-19 and VTE/anticoagulation: frequently asked questions. 2020 [internet publication].全文 external link opens in a new window

530. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020 Apr 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

531. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19: preliminary report. N Engl J Med. 2020 Jul 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

532. Medicines and Healthcare products Regulatory Agency. Dexamethasone in the treatment of COVID-19: implementation and management of supply for treatment in hospitals. 2020 [internet publication].全文 external link opens in a new window

533. Bhimraj A, Morgan RL, Hirsch Shumaker A, et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19 infection. 2020 [internet publication].全文 external link opens in a new window

534. Singh AK, Majumdar S, Singh R, et al. Role of corticosteroid in the management of COVID-19: a systemic review and a clinician's perspective. Diabetes Metab Syndr. 2020 Jun 27;14(5):971-8.全文 external link opens in a new window摘要 external link opens in a new window

535. Canelli R, Connor CW, Gonzalez M, et al. Barrier enclosure during endotracheal intubation. N Engl J Med. 2020 May 14;382(20):1957-8.全文 external link opens in a new window摘要 external link opens in a new window

536. Matava CT, Yu J, Denning S. Clear plastic drapes may be effective at limiting aerosolization and droplet spray during extubation: implications for COVID-19. Can J Anaesth. 2020 Apr 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

537. Lucchini A, Giani M, Isgrò S, et al. The "helmet bundle" in COVID-19 patients undergoing non invasive ventilation. Intensive Crit Care Nurs. 2020 Apr 2:102859.全文 external link opens in a new window摘要 external link opens in a new window

538. Adir Y, Segol O, Kompaniets D, et al. Covid19: minimising risk to healthcare workers during aerosol producing respiratory therapy using an innovative constant flow canopy. Eur Respir J. 2020 Apr 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

539. McEnery T, Gough C, Costello RW. COVID-19: respiratory support outside the intensive care unit. Lancet Respir Med. 2020 Apr 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

540. NHS England. Guidance for the role and use of non-invasive respiratory support in adult patients with COVID19 (confirmed or suspected). 2020 [internet publication].全文 external link opens in a new window

541. Li J, Fink JB, Ehrmann S. High-flow nasal cannula for COVID-19 patients: low risk of bio-aerosol dispersion. Eur Respir J. 2020 May 14;55(5):2000892.全文 external link opens in a new window摘要 external link opens in a new window

542. Schünemann HJ, Khabsa J, Solo K, et al. Ventilation techniques and risk for transmission of coronavirus disease, including COVID-19. Ann Intern Med. 2020 May 22 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

543. Mahase E. Covid-19: most patients require mechanical ventilation in first 24 hours of critical care. BMJ. 2020 Mar 24;368:m1201.全文 external link opens in a new window摘要 external link opens in a new window

544. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020 Jun 6;395(10239):1763-70.全文 external link opens in a new window摘要 external link opens in a new window

545. NHS England. Clinical guide for the management of critical care for adults with COVID-19 during the coronavirus pandemic. 2020 [internet publication].全文 external link opens in a new window

546. Gattinoni L, Coppola S, Cressoni M, et al. Covid-19 does not lead to a "typical" acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020 May 15;201(10):1299-300.全文 external link opens in a new window摘要 external link opens in a new window

547. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020 Apr 16;24(1):154.全文 external link opens in a new window摘要 external link opens in a new window

548. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Apr 14 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

549. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020 Apr 24 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

550. Rello J, Storti E, Belliato M, et al. Clinical phenotypes of SARS-CoV-2: implications for clinicians and researchers. Eur Respir J. 2020 Apr 27 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

551. Tsolaki V, Siempos I, Magira E, et al. PEEP levels in COVID-19 pneumonia. Crit Care. 2020 Jun 6;24(1):303.全文 external link opens in a new window摘要 external link opens in a new window

552. Bos LD, Paulus F, Vlaar APJ, et al. Subphenotyping ARDS in COVID-19 patients: consequences for ventilator management. Ann Am Thorac Soc. 2020 May 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

553. Jain A, Doyle DJ. Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Med. 2020 May 18;:1-2.全文 external link opens in a new window摘要 external link opens in a new window

554. Rice TW, Janz DR. In defense of evidence-based medicine for the treatment of COVID-19 ARDS. Ann Am Thorac Soc. 2020 Apr 22 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

555. Carsetti A, Damia Paciarini A, Marini B, et al. Prolonged prone position ventilation for SARS-CoV-2 patients is feasible and effective. Crit Care. 2020 May 15;24(1):225.全文 external link opens in a new window摘要 external link opens in a new window

556. Pan C, Chen L, Lu C, et al. Lung recruitability in SARS-CoV-2 associated acute respiratory distress syndrome: a single-center, observational study. Am J Respir Crit Care Med. 2020 May 15;201(10):1294-7.全文 external link opens in a new window摘要 external link opens in a new window

557. Sartini C, Tresoldi M, Scarpellini P, et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA. 2020 May 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

558. Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020 May 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

559. American Thoracic Society; Wilson KC, Chotirmall SH, Bai C, et al. COVID‐19: interim guidance on management pending empirical evidence. 2020 [internet publication].全文 external link opens in a new window

560. Ramanathan K, Antognini D, Combes A, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020 May;8(5):518-26.全文 external link opens in a new window摘要 external link opens in a new window

561. NHS England. Clinical guide for extra corporeal membrane oxygenation (ECMO) for respiratory failure in adults during the coronavirus pandemic. 2020 [internet publication].全文 external link opens in a new window

562. Zeng Y, Cai Z, Xianyu Y, et al. Prognosis when using extracorporeal membrane oxygenation (ECMO) for critically ill COVID-19 patients in China: a retrospective case series. Crit Care. 2020 Apr 15;24(1):148.全文 external link opens in a new window摘要 external link opens in a new window

563. Jacobs JP, Stammers AH, St Louis J, et al. Extracorporeal membrane oxygenation in the treatment of severe pulmonary and cardiac compromise in COVID-19: experience with 32 patients. ASAIO J. 2020 Apr 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

564. Chen L, Jiang H, Zhao Y. Pregnancy with Covid-19: management considerations for care of severe and critically ill cases. Am J Reprod Immunol. 2020 Jul 4:e13299.全文 external link opens in a new window摘要 external link opens in a new window

565. Campbell KH, Tornatore JM, Lawrence KE, et al. Prevalence of SARS-CoV-2 among patients admitted for childbirth in Southern Connecticut. JAMA. 2020 May 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

566. Fassett MJ, Lurvey LD, Yasumura L, et al. Universal SARS-Cov-2 screening in women admitted for delivery in a large managed care organization. Am J Perinatol. 2020 Jul 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

567. Bianco A, Buckley AB, Overbey J, et al. Testing of patients and support persons for coronavirus disease 2019 (COVID-19) infection before scheduled deliveries. Obstet Gynecol. 2020 May 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

568. Sutton D, Fuchs K, D'Alton M, et al. Universal screening for SARS-CoV-2 in women admitted for delivery. N Engl J Med. 2020 Apr 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

569. American College of Obstetricians and Gynecologists. Novel coronavirus 2019 (COVID-19). 2020 [internet publication].全文 external link opens in a new window

570. Favre G, Pomar L, Qi X, et al. Guidelines for pregnant women with suspected SARS-CoV-2 infection. Lancet Infect Dis. 2020 Mar 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

571. Chen D, Yang H, Cao Y, et al. Expert consensus for managing pregnant women and neonates born to mothers with suspected or confirmed novel coronavirus (COVID-19) infection. Int J Gynaecol Obstet. 2020 May;149(2):130-6.摘要 external link opens in a new window

572. Royal College of Obstetricians and Gynaecologists. Coronavirus (COVID-19) infection in pregnancy: information for healthcare professionals. 2020 [internet publication].全文 external link opens in a new window

573. American Academy of Pediatrics. Management of infants born to mothers with suspected or confirmed COVID-19. 2020 [internet publication].全文 external link opens in a new window

574. World Health Organization. Breastfeeding and COVID-19. 2020 [internet publication].全文 external link opens in a new window

575. Centers for Disease Control and Prevention. Evaluation and management considerations for neonates at risk for COVID-19. 2020 [internet publication].全文 external link opens in a new window

576. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): care for breastfeeding women. 2020 [internet publication].全文 external link opens in a new window

577. McCreary EK, Pogue JM. Coronavirus disease 2019 treatment: a review of early and emerging options. Open Forum Infect Dis. 2020 Apr;7(4):ofaa105.全文 external link opens in a new window摘要 external link opens in a new window

578. Sanders JM, Monogue ML, Jodlowski TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020 Apr 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

579. Kalil AC. Treating COVID-19: off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA Mar 24 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

580. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 18 March 2020. 2020 [internet publication].全文 external link opens in a new window

581. US Food and Drug Administration. Coronavirus (COVID-19) update: FDA issues emergency use authorization for potential COVID-19 treatment. 2020 [internet publication].全文 external link opens in a new window

582. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19: preliminary report. N Engl J Med. 2020 May 22 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

583. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. 2020 May 27 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

584. Gilead Sciences. Gilead announces results from phase 3 trial of remdesivir in patients with moderate COVID-19. 2020 [internet publication].全文 external link opens in a new window

585. Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020 Jun 11;382(24):2327-36.全文 external link opens in a new window摘要 external link opens in a new window

586. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020 May 16;395(10236):1569-78.全文 external link opens in a new window摘要 external link opens in a new window

587. National Institute for Health and Care Excellence. COVID 19 rapid evidence summary: remdesivir for treating hospitalised patients with suspected or confirmed COVID-19. 2020 [internet publication].全文 external link opens in a new window

588. Dashraath P, Jing Lin Jeslyn W, Mei Xian Karen L, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020 Jun;222(6):521-31.全文 external link opens in a new window摘要 external link opens in a new window

589. US Food and Drug Administration. Coronavirus (COVID-19) update: FDA warns of newly discovered potential drug interaction that may reduce effectiveness of a COVID-19 treatment authorized for emergency use. 2020 [internet publication].全文 external link opens in a new window

590. European Medicines Agency. First COVID-19 treatment recommended for EU authorisation. 2020 [internet publication].全文 external link opens in a new window

591. Medicines and Healthcare products Regulatory Agency. Central alerting system: publication of an interim clinical commissioning policy – remdesivir for patients hospitalised with COVID-19 (adults and children of 12 years and older). 2020 [internet publication].全文 external link opens in a new window

592. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Mar;30(3):269-71.全文 external link opens in a new window摘要 external link opens in a new window

593. Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020 Jun;57:279-83.全文 external link opens in a new window摘要 external link opens in a new window

594. Hernandez AV, Roman YM, Pasupuleti V, et al. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: a living systematic review. Ann Intern Med. 2020 May 27 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

595. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020 Mar 20:105949.全文 external link opens in a new window摘要 external link opens in a new window

596. Kim AHJ, Sparks JA, Liew JW, et al. A rush to judgment? Rapid reporting and dissemination of results and its consequences regarding the use of hydroxychloroquine for COVID-19. Ann Intern Med. 2020 Jun 16;172(12):819-21.全文 external link opens in a new window摘要 external link opens in a new window

597. Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020 Jun;50(4):384.全文 external link opens in a new window摘要 external link opens in a new window

598. Chen Z, Hu J, Zhang Z, et al; medRxiv. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. 2020 [internet publication].全文 external link opens in a new window

599. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020 May 14;369:m1849.全文 external link opens in a new window摘要 external link opens in a new window

600. Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020 Jun 18;382(25):2411-8.全文 external link opens in a new window摘要 external link opens in a new window

601. Mahévas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020 May 14;369:m1844.全文 external link opens in a new window摘要 external link opens in a new window

602. Mehra MR, Ruschitzka F, Patel AN. Retraction: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020 Jun 13;395(10240):1820.全文 external link opens in a new window摘要 external link opens in a new window

603. Open letter to MR Mehra, SS Desai, F Ruschitzka, and AN Patel, authors of “Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID19: a multinational registry analysis”. Lancet. 2020 May 22:S0140-6736(20)31180-6. doi: 10.1016/S0140-6736(20)31180-6. PMID: 32450107 and to Richard Horton (editor of The Lancet): concerns regarding the statistical analysis and data integrity. 2020 [internet publication].全文 external link opens in a new window

604. The Lancet Editors. Expression of concern: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020 Jun 13;395(10240):e102.全文 external link opens in a new window摘要 external link opens in a new window

605. Torjesen I. Covid-19: hydroxychloroquine does not benefit hospitalised patients, UK trial finds. BMJ. 2020 Jun 8;369:m2263.全文 external link opens in a new window摘要 external link opens in a new window

606. World Health Organization. “Solidarity” clinical trial for COVID-19 treatments. 2020 [internet publication].全文 external link opens in a new window

607. Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020 Jun 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

608. Arshad S, Kilgore P, Chaudhry ZS, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020 Jul 2;97:396-403.全文 external link opens in a new window摘要 external link opens in a new window

609. Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann Intern Med. 2020 Jul 16 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

610. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med. 2020 Jul 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

611. Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020 Jul 1;75(7):1667-70.全文 external link opens in a new window摘要 external link opens in a new window

612. Roden DM, Harrington RA, Poppas A, et al. Considerations for drug interactions on QTc in exploratory COVID-19 (coronavirus disease 2019) treatment. Circulation. 2020 Jun 16;141(24):e906-7.全文 external link opens in a new window摘要 external link opens in a new window

613. Kamp TJ, Hamdan MH, January CT. Chloroquine or hydroxychloroquine for COVID-19: is cardiotoxicity a concern? J Am Heart Assoc. 2020 May 28:e016887.全文 external link opens in a new window摘要 external link opens in a new window

614. Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open. 2020 Apr 24;3(4.23):e208857.全文 external link opens in a new window摘要 external link opens in a new window

615. Bessière F, Roccia H, Delinière A, et al. Assessment of QT intervals in a case series of patients with coronavirus disease 2019 (COVID-19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intensive care unit. JAMA Cardiol. 2020 May 1 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

616. Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 May 1 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

617. Nguyen LS, Dolladille C, Drici MD, et al. Cardiovascular toxicities associated with hydroxychloroquine and azithromycin: an analysis of the World Health Organization pharmacovigilance database. Circulation. 2020 May 22 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

618. Lane JCE, Weaver J, Kostka K, et al; medRxiv. Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study. 2020 [internet publication].全文 external link opens in a new window

619. Wong YK, Yang J, He Y. Caution and clarity required in the use of chloroquine for COVID-19. Lancet Rheumatol. 2020 May;2(5):e255.全文 external link opens in a new window摘要 external link opens in a new window

620. Multicenter Collaboration Group of Department of Science and Technology of Guangdong Province and Health Commission of Guangdong Province for Chloroquine in the Treatment of Novel Coronavirus Pneumonia. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi. 2020 Mar 12;43(3):185-8.摘要 external link opens in a new window

621. European Medicines Agency. COVID-19: chloroquine and hydroxychloroquine only to be used in clinical trials or emergency use programmes. 2020 [internet publication].全文 external link opens in a new window

622. Medicines and Healthcare products Regulatory Agency. MHRA suspends recruitment to COVID-19 hydroxychloroquine trials. 2020 [internet publication].全文 external link opens in a new window

623. US Food and Drug Administration. Coronavirus (COVID-19) update: FDA revokes emergency use authorization for chloroquine and hydroxychloroquine. 2020 [internet publication].全文 external link opens in a new window

624. US Food and Drug Administration. FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems. 2020 [internet publication].全文 external link opens in a new window

625. Qaseem A, Yost J, Etxeandia-Ikobaltzeta I, et al. Should clinicians use chloroquine or hydroxychloroquine alone or in combination with azithromycin for the prophylaxis or treatment of COVID-19? Ann Intern Med. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

626. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020 Mar 3;323(15):1488-94.全文 external link opens in a new window摘要 external link opens in a new window

627. Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020 May 7;382(19):1787-99.全文 external link opens in a new window摘要 external link opens in a new window

628. RECOVERY Trial. No clinical benefit from use of lopinavir-ritonavir in hospitalised COVID-19 patients studied in RECOVERY. 2020 [internet publication].全文 external link opens in a new window

629. Beyls C, Martin N, Hermida A, et al. Lopinavir-ritonavir treatment for COVID-19 infection in intensive care unit: risk of bradycardia. Circ Arrhythm Electrophysiol. [Epub ahead of print].全文 external link opens in a new window

630. Chen L, Xiong J, Bao L, et al. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020 Apr;20(4):398-400.全文 external link opens in a new window摘要 external link opens in a new window

631. Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA. 2020 Jun 3 [Epub ahead of print].摘要 external link opens in a new window

632. Rajendran K, Narayanasamy K, Rangarajan J, et al. Convalescent plasma transfusion for the treatment of COVID-19: systematic review. J Med Virol. 2020 May 1 [Epub ahead of print].摘要 external link opens in a new window

633. US Food and Drug Administration. Investigational COVID-19 convalescent plasma: emergency INDs. 2020 [internet publication].全文 external link opens in a new window

634. US Food and Drug Administration. Investigational COVID-19 convalescent plasma. 2020 [internet publication].全文 external link opens in a new window

635. US Food and Drug Administration. Coronavirus (COVID-19) update: FDA encourages recovered patients to donate plasma for development of blood-related therapies. 2020 [internet publication].全文 external link opens in a new window

636. Piechotta V, Chai KL, Valk SJ, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev. 2020 Jul 10;7:CD013600.全文 external link opens in a new window摘要 external link opens in a new window

637. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 2020 Mar 25;21(7).全文 external link opens in a new window摘要 external link opens in a new window

638. Xie Y, Cao S, Li Q, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020 Apr 10 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

639. Zhang J, Yang Y, Yang N, et al. Effectiveness of intravenous immunoglobulin for children with severe COVID-19: a rapid review. Ann Transl Med. 2020 May;8(10):625.全文 external link opens in a new window摘要 external link opens in a new window

640. Marovich M, Mascola JR, Cohen MS. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA. 2020 Jun 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

641. Eli Lilly and Company. Lilly announces start of a phase 1 study for its second potential COVID-19 antibody treatment. 2020 [internet publication].全文 external link opens in a new window

642. Eli Lilly and Company. Lilly begins world's first study of a potential COVID-19 antibody treatment in humans. 2020 [internet publication].全文 external link opens in a new window

643. Regeneron. Regeneron announces important advances in novel COVID-19 antibody program. 2020 [internet publication].全文 external link opens in a new window

644. Campochiaro C, Della-Torre E, Cavalli G, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med. 2020 Jun;76:43-9.全文 external link opens in a new window摘要 external link opens in a new window

645. Kewan T, Covut F, Al–Jaghbeer MJ, et al. Tocilizumab for treatment of patients with severe COVID–19: a retrospective cohort study. EClinicalMedicine. 2020 Jun 20 [Epub ahead of print].全文 external link opens in a new window

646. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020 Jun 24 [Epub ahead of print].全文 external link opens in a new window

647. Somers EC, Eschenauer GA, Troost JP, et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin Infect Dis. 2020 Jul 11 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

648. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020 Jun;2(6):e325-31.全文 external link opens in a new window摘要 external link opens in a new window

649. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020 May 29 [Epub ahead of print].全文 external link opens in a new window

650. Navarro-Millán I, Sattui SE, Lakhanpal A, et al. Use of anakinra to prevent mechanical ventilation in severe COVID-19: a case series. Arthritis Rheumatol. 2020 Jun 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

651. National Institute for Health and Care Excellence. COVID 19 rapid evidence summary: anakinra for COVID-19 associated secondary haemophagocytic lymphohistiocytosis. 2020 [internet publication].全文 external link opens in a new window

652. De Luca G, Cavalli G, Campochiaro C, et al. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. Lancet Rheum. 2020 Jun 16 [Epub ahead of print].全文 external link opens in a new window

653. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020 Jun;53(3):368-70.全文 external link opens in a new window摘要 external link opens in a new window

654. Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020 Jul;146(1):137-46.全文 external link opens in a new window摘要 external link opens in a new window

655. Titanji BK, Farley MM, Mehta A, et al. Use of baricitinib in patients with moderate and severe COVID-19. Clin Infect Dis. 2020 Jun 29 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

656. ClinicalTrials.gov. Mesenchymal stem cell treatment for pneumonia patients infected with 2019 novel coronavirus. 2020 [internet publication].全文 external link opens in a new window

657. Centre for Evidence-Based Medicine; Soliman R, Brassey J, Plüddemann A, et al. Does BCG vaccination protect against acute respiratory infections and COVID-19? A rapid review of current evidence. 2020 [internet publication].全文 external link opens in a new window

658. World Health Organization. Bacille Calmette-Guérin (BCG) vaccination and COVID-19. 2020 [internet publication].全文 external link opens in a new window

659. Department of Health and Social Care. COVID-19 treatments could be fast-tracked through new national clinical trial initiative. 2020 [internet publication].全文 external link opens in a new window

660. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 2020 Mar 4 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

661. ClinicalTrials.gov. Losartan for patients with COVID-19 requiring hospitalization. 2020 [internet publication].全文 external link opens in a new window

662. ClinicalTrials.gov. Losartan for patients with COVID-19 not requiring hospitalization. 2020 [internet publication].全文 external link opens in a new window

663. Chinese Clinical Trial Registry. A randomized, open-label, blank-controlled trial for the efficacy and safety of lopinavir-ritonavir and interferon-alpha 2b in hospitalization patients with 2019-nCoV pneumonia (novel coronavirus pneumonia, NCP). 2020 [internet publication].全文 external link opens in a new window

664. Chinese Clinical Trial Registry. Clinical study for safety and efficacy of favipiravir in the treatment of novel coronavirus pneumonia (COVID-19). 2020 [internet publication].全文 external link opens in a new window

665. Chinese Clinical Trial Registry. Clinical study of arbidol hydrochloride tablets in the treatment of novel coronavirus pneumonia (COVID-19). 2020 [internet publication].全文 external link opens in a new window

666. Chinese Clinical Trial Registry. Randomized, open-label, controlled trial for evaluating of the efficacy and safety of baloxavir marboxil, favipiravir, and lopinavir-ritonavir in the treatment of novel coronavirus pneumonia (COVID-19) patients. 2020 [internet publication].全文 external link opens in a new window

667. Zeng YM, Xu XL, He XQ, et al. Comparative effectiveness and safety of ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha and ribavirin plus lopinavir/ritonavir plus interferon-alpha in patients with mild to moderate novel coronavirus pneumonia. Chin Med J (Engl). 2020 May 5;133(9):1132-4.全文 external link opens in a new window摘要 external link opens in a new window

668. Li H, Wang YM, Xu JY, et al. Potential antiviral therapeutics for 2019 novel coronavirus [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi. 2020 Mar 12;43(3):170-2.摘要 external link opens in a new window

669. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. J Infect. 2020 Jul;81(1):e1-5.全文 external link opens in a new window摘要 external link opens in a new window

670. ClinicalTrials.gov. Efficacy and safety of darunavir and cobicistat for treatment of pneumonia caused by 2019-nCoV (DACO-nCoV). 2020 [internet publication].全文 external link opens in a new window

671. Synairgen. COVID-19. 2020 [internet publication].全文 external link opens in a new window

672. CytoDyn Inc. Leronlimab used in seven patients with severe COVID-19 demonstrated promise with two intubated patients in ICU, removed from ICU and extubated with reduced pulmonary inflammation. 2020 [internet publication].全文 external link opens in a new window

673. Huang D, Yu H, Wang T, et al. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Med Virol. 2020 Jul 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

674. Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020 May 30;395(10238):1695-704.全文 external link opens in a new window摘要 external link opens in a new window

675. Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020 Apr 21:100190.全文 external link opens in a new window摘要 external link opens in a new window

676. ClinicalTrials.gov. Vitamin C infusion for the treatment of severe 2019-nCoV infected pneumonia. 2020 [internet publication].全文 external link opens in a new window

677. Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020 Apr 2;12(4).全文 external link opens in a new window摘要 external link opens in a new window

678. McCartney DM, Byrne DG. Optimisation of vitamin D status for enhanced immuno-protection against Covid-19. Ir Med J. 2020 Apr 3;113(4):58.全文 external link opens in a new window摘要 external link opens in a new window

679. Jakovac H. COVID-19 and vitamin D: is there a link and an opportunity for intervention? Am J Physiol Endocrinol Metab. 2020 May 1;318(5):E589.全文 external link opens in a new window摘要 external link opens in a new window

680. ClinicalTrials.gov. Vitamin D on prevention and treatment of COVID-19 (COVITD-19). 2020 [internet publication].全文 external link opens in a new window

681. ClinicalTrials.gov. COVID-19 and vitamin D supplementation: a multicenter randomized controlled trial of high dose versus standard dose vitamin D3 in high-risk COVID-19 patients (CoVitTrial). 2020 [internet publication].全文 external link opens in a new window

682. Centre for Evidence-Based Medicine; Lee J, van Hecke O, Roberts N. Vitamin D: a rapid review of the evidence for treatment or prevention in COVID-19. 2020 [internet publication].全文 external link opens in a new window

683. National Institute for Health and Care Excellence. COVID-19 rapid evidence summary: vitamin D for COVID-19. 2020 [internet publication].全文 external link opens in a new window

684. Mak JWY, Chan FKL, Ng SC. Probiotics and COVID-19: authors' reply. Lancet Gastroenterol Hepatol. 2020 Aug;5(8):722-3.全文 external link opens in a new window摘要 external link opens in a new window

685. Yang Y, Islam MS, Wang J, et al. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci. 2020 Mar 15;16(10):1708-17.全文 external link opens in a new window摘要 external link opens in a new window

686. Harch PG. Hyperbaric oxygen treatment of novel coronavirus (COVID-19) respiratory failure. Med Gas Res. Apr-Jun 2020;10(2):61-2.摘要 external link opens in a new window

687. Thibodeaux K, Speyrer M, Raza A, et al. Hyperbaric oxygen therapy in preventing mechanical ventilation in COVID-19 patients: a retrospective case series. J Wound Care. 2020 May 1;29(sup5a):S4-8.摘要 external link opens in a new window

688. ClinicalTrials.gov. Hyperbaric oxygen for COVID-19 patients. 2020 [internet publication].全文 external link opens in a new window

689. ClinicalTrials.gov. Safety and efficacy of hyperbaric oxygen for ARDS in patients with COVID-19 (COVID-19-HBO). 2020 [internet publication].全文 external link opens in a new window

690. Martel J, Ko YF, Young JD, et al. Could nasal nitric oxide help to mitigate the severity of COVID-19? Microbes Infect. 2020 May 6 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

691. ClinicalTrials.gov. Intravenous aviptadil for critical COVID-19 with respiratory failure (COVID-AIV). 2020 [internet publication].全文 external link opens in a new window

692. ClinicalTrials.gov. Inhaled aviptadil for the treatment of non-acute lung injury in COVID-19 (AVINALI). 2020 [internet publication].全文 external link opens in a new window

693. World Health Organization. Coronavirus disease (COVID-2019) situation reports. 2020 [internet publication].全文 external link opens in a new window

694. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020 Jun;20(6):669-77.全文 external link opens in a new window摘要 external link opens in a new window

695. Williamson EJ, Walker AJ, Bhaskaran K, et al. OpenSAFELY: factors associated with COVID-19 death in 17 million patients. Nature. 2020 Jul 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

696. Centre for Evidence-Based Medicine; Oke J, Heneghan C. Global COVID-19 case fatality rates. 2020 [internet publication].全文 external link opens in a new window

697. Centre for Evidence-Based Medicine; Oke J, Heneghan C. Reconciling COVID-19 death data in the UK. 2020 [internet publication].全文 external link opens in a new window

698. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020 Mar 23 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

699. Mahase E. Coronavirus covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ. 2020 Feb 18;368:m641.全文 external link opens in a new window摘要 external link opens in a new window

700. Rajgor DD, Lee MH, Archuleta S, et al. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020 Jul;20(7):776-7.全文 external link opens in a new window摘要 external link opens in a new window

701. Centers for Disease Control and Prevention. Commercial laboratory seroprevalence survey data. 2020 [internet publication].全文 external link opens in a new window

702. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020 Jul 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

703. Perez-Saez J, Lauer SA, Kaiser L, et al. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 2020 Jul 14 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

704. Shakiba M, Hashemi Nazari SS, Mehrabian F, et al; medRxiv. Seroprevalence of COVID-19 virus infection in Guilan province, Iran. 2020 [internet publication].全文 external link opens in a new window

705. Erikstrup C, Hother CE, Pedersen OB, et al; medRxiv. Estimation of SARS-CoV-2 infection fatality rate by real-time antibody screening of blood donors. 2020 [internet publication].全文 external link opens in a new window

706. Bloomberg; LaVito A, Brown KV, Clukey K. New York finds virus marker in 13.9%, suggesting wide spread. 2020 [internet publication].全文 external link opens in a new window

707. Los Angeles County Department of Public Health. USC-LA county study: early results of antibody testing suggest number of COVID-19 infections far exceeds number of confirmed cases in Los Angeles County. 2020 [internet publication].全文 external link opens in a new window

708. Sood N, Simon P, Ebner P, et al. Seroprevalence of SARS-CoV-2-specific antibodies among adults in Los Angeles County, California, on April 10-11, 2020. JAMA. 2020 May 18;323(23):2425-7.全文 external link opens in a new window摘要 external link opens in a new window

709. Bendavid E, Mulaney B, Sood N; medRxiv. COVID-19 antibody seroprevalence in Santa Clara County, California. 2020 [internet publication].全文 external link opens in a new window

710. Korth J, Wilde W, Dolff S, et al. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. J Clin Virol. 2020 May 13;104437.全文 external link opens in a new window摘要 external link opens in a new window

711. Xu X, Sun J, Nie S, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat Med. 2020 Jun 5 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

712. Centers for Disease Control and Prevention. COVID-19 pandemic planning scenarios. 2020 [internet publication].全文 external link opens in a new window

713. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: a nationwide analysis. Eur Respir J. 2020 May 14;55(5):2000547.全文 external link opens in a new window摘要 external link opens in a new window

714. Sorbello M, El-Boghdadly K, Di Giacinto I, et al. The Italian COVID-19 outbreak: experiences and recommendations from clinical practice. Anaesthesia. 2020 Jun;75(6):724-32.全文 external link opens in a new window摘要 external link opens in a new window

715. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 6;323(16):1574-81.全文 external link opens in a new window摘要 external link opens in a new window

716. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 Mar 19;323(16):1612-4.全文 external link opens in a new window摘要 external link opens in a new window

717. McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020 May 21;382(21):2005-11.全文 external link opens in a new window摘要 external link opens in a new window

718. Mehta V, Goel S, Kabarriti R, et al. Case fatality rate of cancer patients with COVID-19 in a New York hospital system. Cancer Discov. 2020 Jul;10(7):935-41.全文 external link opens in a new window摘要 external link opens in a new window

719. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May;46(5):846-8.全文 external link opens in a new window摘要 external link opens in a new window

720. Auld SC, Caridi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit Care Med. 2020 May 26 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

721. Yang F, Shi S, Zhu J, et al. Analysis of 92 deceased patients with COVID-19. J Med Virol. 2020 Apr 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

722. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 May;8(5):475-81.全文 external link opens in a new window摘要 external link opens in a new window

723. Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: a meta-analysis. J Med Virol. 2020 Apr 28 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

724. Zou X, Li S, Fang M, et al. Acute physiology and chronic health evaluation II score as a predictor of hospital mortality in patients of coronavirus disease 2019. Crit Care Med. 2020 May 1;48(8):e657-65.全文 external link opens in a new window摘要 external link opens in a new window

725. Mo XN, Su ZQ, Lei CL, et al. Serum amyloid a is a predictor for prognosis of COVID-19. Respirology. 2020 Jul;25(7):764-5.全文 external link opens in a new window摘要 external link opens in a new window

726. Shi L, Wang Y, Wang Y, et al. Dyspnea rather than fever is a risk factor for predicting mortality in patients with COVID-19. J Infect. 2020 May 14 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

727. Khalil K, Agbontaen K, McNally D, et al. Clinical characteristics and 28-day mortality of medical patients admitted with COVID-19 to a central London teaching hospital. J Infect. 2020 Jun 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

728. Tan T, Khoo B, Mills EG, et al. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020 Jun 18;8(8):659-60.全文 external link opens in a new window摘要 external link opens in a new window

729. Xu L, Mao Y, Chen G. Risk factors for 2019 novel coronavirus disease (COVID-19) patients progressing to critical illness: a systematic review and meta-analysis. Aging (Albany NY). 2020 Jun 23;12.全文 external link opens in a new window摘要 external link opens in a new window

730. Huang D, Lian X, Song F, et al. Clinical features of severe patients infected with 2019 novel coronavirus: a systematic review and meta-analysis. Ann Transl Med. 2020 May;8(9):576.全文 external link opens in a new window摘要 external link opens in a new window

731. Li J, He X, Yuanyuan, et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am J Infect Control. 2020 Jun 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

732. Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol. 2020 Jul 10 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

733. Gupta S, Hayek SS, Wang W, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med. 2020 Jul 15 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

734. Parohan M, Yaghoubi S, Seraji A, et al. Risk factors for mortality in patients with coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020 Jun 8:1-9.全文 external link opens in a new window摘要 external link opens in a new window

735. Fan G, Tu C, Zhou F, et al. Comparison of severity scores for COVID-19 patients with pneumonia: a retrospective study. Eur Respir J. 2020 Jul 16 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

736. Ji D, Zhang D, Xu J, et al. Prediction for progression risk in patients with COVID-19 pneumonia: the CALL score. Clin Infect Dis. 2020 Apr 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

737. Liang W, Liang H, Ou L, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020 May 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

738. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020 Mar 16 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

739. Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: a case report. Int J Infect Dis. 2020 Mar 5;93:297-9.全文 external link opens in a new window摘要 external link opens in a new window

740. Xing Y, Mo P, Xiao Y, et al. Post-discharge surveillance and positive virus detection in two medical staff recovered from coronavirus disease 2019 (COVID-19), China, January to February 2020. Euro Surveill. 2020 Mar;25(10).全文 external link opens in a new window摘要 external link opens in a new window

741. Ye G, Pan Z, Pan Y, et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect. 2020 May;80(5):e14-7.全文 external link opens in a new window摘要 external link opens in a new window

742. Yuan J, Kou S, Liang Y, et al. PCR assays turned positive in 25 discharged COVID-19 patients. Clin Infect Dis. 2020 Apr 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

743. Xiao AT, Tong YX, Zhang S. False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: rather than recurrence. J Med Virol. 2020 Apr 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

744. Tang X, Zhao S, He D, et al. Positive RT-PCR tests among discharged COVID-19 patients in Shenzhen, China. Infect Control Hosp Epidemiol. 2020 Apr 16:1-7.全文 external link opens in a new window摘要 external link opens in a new window

745. Loconsole D, Passerini F, Palmieri VO, et al. Recurrence of COVID-19 after recovery: a case report from Italy. Infection. 2020 May 16 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

746. Hu R, Jiang Z, Gao H, et al. Recurrent positive reverse transcriptase-polymerase chain reaction results for coronavirus disease 2019 in patients discharged from a hospital in China. JAMA Netw Open. 2020 May 1;3(5):e2010475.全文 external link opens in a new window摘要 external link opens in a new window

747. Wu F, Zhang W, Zhang L, et al. Discontinuation of antiviral drugs may be the reason for recovered COVID-19 patients testing positive again. Br J Hosp Med (Lond). 2020 Apr 2;81(4):1-2.全文 external link opens in a new window摘要 external link opens in a new window

748. Wu J, Liu X, Liu J, et al. Coronavirus disease 2019 test results after clinical recovery and hospital discharge among patients in China. JAMA Netw Open. 2020 May 1;3(5):e209759.全文 external link opens in a new window摘要 external link opens in a new window

749. Zou Y, Wang BR, Sun L, et al. The issue of recurrently positive patients who recovered from COVID-19 according to the current discharge criteria: investigation of patients from multiple medical institutions in Wuhan, China. J Infect Dis. 2020 Jun 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

750. Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020 Jun 16;52(6):971-7.全文 external link opens in a new window摘要 external link opens in a new window

751. Chandrashekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020 May 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

752. Kirkcaldy RD, King BA, Brooks JT. COVID-19 and postinfection immunity: limited evidence, many remaining questions. JAMA. 2020 May 11 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

753. Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020 Jun 18 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

754. BMJ Opinion. Paul Garner: for 7 weeks I have been through a roller coaster of ill health, extreme emotions, and utter exhaustion. 2020 [internet publication].全文 external link opens in a new window

755. Mahase E. Covid-19: what do we know about “long covid”? BMJ. 2020 Jul 14;370:m2815.全文 external link opens in a new window摘要 external link opens in a new window

756. Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network: United States, March–June 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 24 [Epub ahead of print].全文 external link opens in a new window

757. Carfì A, Bernabei R, Landi F, et al. Persistent symptoms in patients after acute COVID-19. JAMA. 2020 Jul 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

758. NHS England. After-care needs of inpatients recovering from COVID-19. 2020 [internet publication].全文 external link opens in a new window

759. Centre for Evidence-Based Medicine; Kernohan A, Calderon M. What are the risk factors and effectiveness of prophylaxis for venous thromboembolism in COVID-19 patients? 2020 [internet publication].全文 external link opens in a new window

760. Bilaloglu S, Aphinyanaphongs Y, Jones S, et al. Thrombosis in hospitalized patients With COVID-19 in a New York City health system. JAMA. 2020 Jul 20 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

761. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020 Jul;18(7):1747-51.全文 external link opens in a new window摘要 external link opens in a new window

762. Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020 Jun;18(6):1421-4.全文 external link opens in a new window摘要 external link opens in a new window

763. Klok FA, Kruip MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020 Jul;191:148-50.全文 external link opens in a new window摘要 external link opens in a new window

764. Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020 May 5 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

765. Grillet F, Behr J, Calame P, et al. Acute pulmonary embolism associated with COVID-19 pneumonia detected by pulmonary CT angiography. Radiology. 2020 Apr 23:201544.全文 external link opens in a new window摘要 external link opens in a new window

766. Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence. Circulation. 2020 Jul 14;142(2):184-6.全文 external link opens in a new window摘要 external link opens in a new window

767. Thomas W, Varley J, Johnston A, et al. Thrombotic complications of patients admitted to intensive care with COVID-19 at a teaching hospital in the United Kingdom. Thromb Res. 2020 Apr 25;191:76-7.全文 external link opens in a new window摘要 external link opens in a new window

768. Poyiadji N, Cormier P, Patel PY, et al. Acute pulmonary embolism and COVID-19. Radiology. 2020 May 14:201955.全文 external link opens in a new window摘要 external link opens in a new window

769. Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020 Jul;18(7):1743-6.全文 external link opens in a new window摘要 external link opens in a new window

770. Ren B, Yan F, Deng Z, et al. Extremely high incidence of lower extremity deep venous thrombosis in 48 patients with severe COVID-19 in Wuhan. Circulation. 2020 Jul 14;142(2):181-3.全文 external link opens in a new window摘要 external link opens in a new window

771. Zhang L, Feng X, Zhang D, et al. Deep vein thrombosis in hospitalized patients with COVID-19 in Wuhan, China: prevalence, risk factors, and outcome. Circulation. 2020 Jul 14;142(2):114-28.全文 external link opens in a new window摘要 external link opens in a new window

772. Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020 May 11;7(6):e438-40.全文 external link opens in a new window摘要 external link opens in a new window

773. Demelo-Rodríguez P, Cervilla-Muñoz E, Ordieres-Ortega L, et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res. 2020 May 13;192:23-6.全文 external link opens in a new window摘要 external link opens in a new window

774. Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020 May 6 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

775. Wang T, Chen R, Liu C, et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020 May;7(5):e362-3.全文 external link opens in a new window摘要 external link opens in a new window

776. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020 Apr 23;382(17):e38.全文 external link opens in a new window摘要 external link opens in a new window

777. Bowles L, Platton S, Yartey N, et al. Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. N Engl J Med. 2020 Jul 16;383(3):288-90.全文 external link opens in a new window摘要 external link opens in a new window

778. Galeano-Valle F, Oblitas CM, Ferreiro-Mazón MM, et al. Antiphospholipid antibodies are not elevated in patients with severe COVID-19 pneumonia and venous thromboembolism. Thromb Res. 2020 Aug;192:113-5.全文 external link opens in a new window摘要 external link opens in a new window

779. Xiao M, Zhang Y, Zhang S, et al. Brief report: anti-phospholipid antibodies in critically ill patients with coronavirus disease 2019 (COVID-19). Arthritis Rheumatol. 2020 Jun 30 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

780. van Nieuwkoop C. COVID-19 associated pulmonary thrombosis. Thromb Res. 2020 Jul;191:151.全文 external link opens in a new window摘要 external link opens in a new window

781. McGonagle D, O'Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020 May 7 [Epub ahead of print].全文 external link opens in a new window

782. Belen-Apak FB, Sarıalioğlu F. Pulmonary intravascular coagulation in COVID-19: possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J Thromb Thrombolysis. 2020 Aug;50(2):278-80.全文 external link opens in a new window摘要 external link opens in a new window

783. Perini P, Nabulsi B, Massoni CB, et al. Acute limb ischaemia in two young, non-atherosclerotic patients with COVID-19. Lancet. 2020 May 16;395(10236):1546.全文 external link opens in a new window摘要 external link opens in a new window

784. Griffin DO, Jensen A, Khan M, et al. Arterial thromboembolic complications in COVID-19 in low-risk patients despite prophylaxis. Br J Haematol. 2020 Jul;190(1):e11-3.全文 external link opens in a new window摘要 external link opens in a new window

785. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020 Apr 23;191:9-14.全文 external link opens in a new window摘要 external link opens in a new window

786. Vulliamy P, Jacob S, Davenport RA. Acute aorto-iliac and mesenteric arterial thromboses as presenting features of COVID-19. Br J Haematol. 2020 Jun;189(6):1053-4.全文 external link opens in a new window摘要 external link opens in a new window

787. Hemasian H, Ansari B. First case of Covid-19 presented with cerebral venous thrombosis: a rare and dreaded case. Rev Neurol (Paris). 2020 Jun;176(6):521-3.全文 external link opens in a new window摘要 external link opens in a new window

788. Madjid M, Safavi-Naeini P, Solomon SD, et al. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020 Mar 27 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

789. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020 May 14;41(19):1861-2.全文 external link opens in a new window摘要 external link opens in a new window

790. Liu PP, Blet A, Smyth D, et al. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020 Jul 7;142(1):68-78.全文 external link opens in a new window摘要 external link opens in a new window

791. Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. 2020 May 19;141(20):1648-55.全文 external link opens in a new window摘要 external link opens in a new window

792. Hendren NS, Drazner MH, Bozkurt B, et al. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020 Jun 9;141(23):1903-14.全文 external link opens in a new window摘要 external link opens in a new window

793. Parohan M, Yaghoubi S, Seraji A. Cardiac injury is associated with severe outcome and death in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Eur Heart J Acute Cardiovasc Care. 2020 Jun 21 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

794. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020 Mar 25;5(7):802-10.全文 external link opens in a new window摘要 external link opens in a new window

795. He XW, Lai JS, Cheng J, et al. Impact of complicated myocardial injury on the clinical outcome of severe or critically ill COVID-19 patients [in Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020 Mar 15;48(0):E011.摘要 external link opens in a new window

796. Santoso A, Pranata R, Wibowo A, et al. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: a meta-analysis. Am J Emerg Med. 2020 Apr 19 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

797. Inciardi RM, Adamo M, Lupi L, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020 May 14;41(19):1821-9.全文 external link opens in a new window摘要 external link opens in a new window

798. Zhang J, Lu S, Wang X, et al. Do underlying cardiovascular diseases have any impact on hospitalised patients with COVID-19? Heart. 2020 May 25 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

799. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 Mar 27;5(7):1-8.全文 external link opens in a new window摘要 external link opens in a new window

800. Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020 Jun 7;41(22):2070-9.全文 external link opens in a new window摘要 external link opens in a new window

801. Kunutsor SK, Laukkanen JA. Cardiovascular complications in COVID-19: a systematic review and meta-analysis. J Infect. 2020 Jun 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

802. Zeng JH, Liu YX, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020 Apr 10;1-5.全文 external link opens in a new window摘要 external link opens in a new window

803. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 Mar 27;5(7):1-6.全文 external link opens in a new window摘要 external link opens in a new window

804. Hua A, O'Gallagher K, Sado D, et al. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020 Jun 7;41(22):2130.全文 external link opens in a new window摘要 external link opens in a new window

805. Meyer P, Degrauwe S, Delden CV, et al. Typical takotsubo syndrome triggered by SARS-CoV-2 infection. Eur Heart J. 2020 May 14;41(19):1860.全文 external link opens in a new window摘要 external link opens in a new window

806. Bangalore S, Sharma A, Slotwiner A, et al. ST-segment elevation in patients with Covid-19: a case series. N Engl J Med. 2020 Jun 18;382(25):2478-80.全文 external link opens in a new window摘要 external link opens in a new window

807. National Institute for Health and Care Excellence. COVID-19 rapid guideline: acute myocardial injury. 2020 [internet publication].全文 external link opens in a new window

808. Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020 May 5 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

809. Xiong TY, Redwood S, Prendergast B, et al. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020 May 14;41(19):1798-800.全文 external link opens in a new window摘要 external link opens in a new window

810. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 Jul 27 [Epub ahead of print].全文 external link opens in a new window

811. Chen YT, Shao SC, Hsu CK, et al. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care. 2020 Jun 16;24(1):346.全文 external link opens in a new window摘要 external link opens in a new window

812. Yang X, Jin Y, Li R, et al. Prevalence and impact of acute renal impairment on COVID-19: a systematic review and meta-analysis. Crit Care. 2020 Jun 18;24(1):356.全文 external link opens in a new window摘要 external link opens in a new window

813. Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 22020 Jul;98(1):209-18.全文 external link opens in a new window摘要 external link opens in a new window

814. National Institute for Health and Care Excellence. COVID-19 rapid guideline: acute kidney injury in hospital. 2020 [internet publication].全文 external link opens in a new window

815. Stewart DJ, Hartley JC, Johnson M, et al. Renal dysfunction in hospitalised children with COVID-19. Lancet Child Adolesc Health. 2020 Jun 15;4(8):e28-9.全文 external link opens in a new window摘要 external link opens in a new window

816. Farkash EA, Wilson AM, Jentzen JM. Ultrastructural evidence for direct renal infection with SARS-CoV-2. J Am Soc Nephrol. 2020 May 5 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

817. Nasr SH, Kopp JB. COVID-19-associated collapsing glomerulopathy: an emerging entity. Kidney Int Rep. 2020 May 4;5(6):759-61.全文 external link opens in a new window摘要 external link opens in a new window

818. Gross O, Moerer O, Weber M, et al. COVID-19-associated nephritis: early warning for disease severity and complications? Lancet. 2020 May 16;395(10236):e87-8.全文 external link opens in a new window摘要 external link opens in a new window

819. Wijarnpreecha K, Ungprasert P, Panjawatanan P, et al. COVID-19 and liver injury: a meta-analysis. Eur J Gastroenterol Hepatol. 2020 Jul 3 [Epub ahead of print].摘要 external link opens in a new window

820. Alqahtani SA, Schattenberg JM. Liver injury in COVID-19: the current evidence. United European Gastroenterol J. 2020 Jun;8(5):509-19.全文 external link opens in a new window摘要 external link opens in a new window

821. Wong GL, Wong VW, Thompson A, et al. Management of patients with liver derangement during the COVID-19 pandemic: an Asia-Pacific position statement. Lancet Gastroenterol Hepatol. 2020 Aug;5(8):776-87.全文 external link opens in a new window摘要 external link opens in a new window

822. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020 Apr 10;77(6):1-9.全文 external link opens in a new window摘要 external link opens in a new window

823. Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020 Jun 1 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

824. Kandemirli SG, Dogan L, Sarikaya ZT, et al. Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology. 2020 May 8:201697.全文 external link opens in a new window摘要 external link opens in a new window

825. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020 Jul 2 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

826. Nepal G, Rehrig JH, Shrestha GS, et al. Neurological manifestations of COVID-19: a systematic review. Crit Care. 2020 Jul 13;24(1):421.全文 external link opens in a new window摘要 external link opens in a new window

827. Abdullahi A, Candan SA, Abba MA, et al. Neurological and musculoskeletal features of COVID-19: a systematic review and meta-analysis. Front Neurol. 2020 Jun 26;11:687.全文 external link opens in a new window摘要 external link opens in a new window

828. Merkler AE, Parikh NS, Mir S, et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 2020 Jul 2 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

829. Ntaios G, Michel P, Georgiopoulos G, et al. Characteristics and outcomes in patients with COVID-19 and acute ischemic stroke. Stroke. 2020 Jul 9 [Epub ahead of print].全文 external link opens in a new window

830. Qureshi AI, Abd-Allah F, Alsenani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: report of an international panel. Int J Stroke. 2020 Jul;15(5):540-54.全文 external link opens in a new window摘要 external link opens in a new window

831. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `'cytokine storm' in COVID-19. J Infect. 2020 Jun;80(6):607-13.全文 external link opens in a new window摘要 external link opens in a new window

832. Wang Z, Yang B, Li Q, et al. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020 Mar 16 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

833. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. 2020 May 1;130(5):2202-5.全文 external link opens in a new window摘要 external link opens in a new window

834. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the experience of clinical immunologists from China. Clin Immunol. 2020 Mar 25:108393.全文 external link opens in a new window摘要 external link opens in a new window

835. Pain CE, Felsenstein S, Cleary G, et al. Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms. Lancet Rheumatol. 2020 May 15;2(7):e376-9.全文 external link opens in a new window摘要 external link opens in a new window

836. Belot A, Antona D, Renolleau S, et al. SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020. Euro Surveill. 2020 Jun;25(22).全文 external link opens in a new window摘要 external link opens in a new window

837. New York State. Governor Cuomo announces state is helping to develop the national criteria for identifying and responding to COVID-related illness in children. 2020 [internet publication].全文 external link opens in a new window

838. Paediatric Intensive Care Society. PICS statement: increased number of reported cases of novel presentation of multisystem inflammatory disease. 2020 [internet publication].全文 external link opens in a new window

839. Mahase E. Covid-19: concerns grow over inflammatory syndrome emerging in children. BMJ. 2020 Apr 28;369:m1710.全文 external link opens in a new window摘要 external link opens in a new window

840. New York City Health Department. 2020 health alert #13: pediatric multi-system inflammatory syndrome potentially associated with COVID-19. 2020 [internet publication].全文 external link opens in a new window

841. Riphagen S, Gomez X, Gonzalez-Martinez C, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020 May 23;395(10237):1607-8.全文 external link opens in a new window摘要 external link opens in a new window

842. Whittaker E, Bamford A, Kenny J, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. 2020 Jun 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

843. Miller J, Cantor A, Zachariah P, et al. Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children (MIS-C) that is related to COVID-19: a single center experience of 44 cases. Gastroenterology. 2020 Jun 4 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

844. Cheung EW, Zachariah P, Gorelik M, et al. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City. JAMA. 2020 Jun 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

845. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020 Jun 29 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

846. Dufort EM, Koumans EH, Chow EJ, et al. Multisystem inflammatory syndrome in children in New York State. N Engl J Med. 2020 Jun 29 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

847. Davies P, Evans C, Kanthimathinathan HK, et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study. Lancet Child Adolesc Health. 2020 Jul 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

848. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020 Jun 6;395(10239):1771-8.全文 external link opens in a new window摘要 external link opens in a new window

849. Belhadjer Z, Méot M, Bajolle F, et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation. 2020 May 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

850. Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. 2020 Jun 3;369:m2094.全文 external link opens in a new window摘要 external link opens in a new window

851. Kaushik S, Aydin SI, Derespina KR, et al. Multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2 infection: a multi-institutional study from New York City. J Pediatr. 2020 Jun 14 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

852. Royal College of Paediatrics and Child Health. Guidance: paediatric multisystem inflammatory syndrome temporally associated with COVID-19. 2020 [internet publication].全文 external link opens in a new window

853. World Health Organization. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19. 2020 [internet publication].全文 external link opens in a new window

854. Centers for Disease Control and Prevention. Multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19). 2020 [internet publication].全文 external link opens in a new window

855. Shulman ST. Pediatric coronavirus disease-2019-associated multisystem inflammatory syndrome. J Pediatric Infect Dis Soc. 2020 Jul 13;9(3):285-6.全文 external link opens in a new window摘要 external link opens in a new window

856. Sokolovsky S, Soni P, Hoffman T, et al. COVID-19 associated Kawasaki-like multisystem inflammatory disease in an adult. Am J Emerg Med. 2020 Jun 25 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

857. Jones I, Bell LCK, Manson JJ, et al. An adult presentation consistent with PIMS-TS. Lancet Rheumatol. 2020 Jul 10 [Epub ahead of print].全文 external link opens in a new window

858. Shaigany S, Gnirke M, Guttmann A, et al. An adult with Kawasaki-like multisystem inflammatory syndrome associated with COVID-19. Lancet. 2020 Jul 10 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

859. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar 13:101623.全文 external link opens in a new window摘要 external link opens in a new window

860. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020 Apr;18(4):844-7.全文 external link opens in a new window摘要 external link opens in a new window

861. Song JC, Wang G, Zhang W, et al. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Mil Med Res. 2020 Apr 20;7(1):19.全文 external link opens in a new window摘要 external link opens in a new window

862. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020 Jun 4;135(23):2033-40.全文 external link opens in a new window摘要 external link opens in a new window

863. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020 May;18(5):1023-6.全文 external link opens in a new window摘要 external link opens in a new window

864. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020 May;18(5):1094-9.全文 external link opens in a new window摘要 external link opens in a new window

865. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020 Feb;9(1):51-60.全文 external link opens in a new window摘要 external link opens in a new window

866. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020 Mar 7;395(10226):809-15.全文 external link opens in a new window摘要 external link opens in a new window

867. Schwartz DA. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med. 2020 Mar 17 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

868. Liu D, Li L, Wu X, et al. Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: a preliminary analysis. AJR Am J Roentgenol. 2020 Mar 18:1-6.全文 external link opens in a new window摘要 external link opens in a new window

869. Di Mascio D, Khalil A, Saccone G, et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID 1 -19) during pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2020 Mar 25:100107.全文 external link opens in a new window摘要 external link opens in a new window

870. Chen L, Li Q, Zheng D, et al. Clinical characteristics of pregnant women with Covid-19 in Wuhan, China. N Engl J Med. 2020 Jun 18;382(25):e100.全文 external link opens in a new window摘要 external link opens in a new window

871. Baud D, Greub G, Favre G, et al. Second-trimester miscarriage in a pregnant woman with SARS-CoV-2 infection. JAMA. 2020 Apr 30;323(21):2198-200.全文 external link opens in a new window摘要 external link opens in a new window

872. Hantoushzadeh S, Shamshirsaz AA, Aleyasin A, et al. Maternal death due to COVID-19 disease. Am J Obstet Gynecol. 2020 Jul;223(1):109.全文 external link opens in a new window摘要 external link opens in a new window

873. Li J, Wang Y, Zeng Y, et al. Critically ill pregnant patient with COVID-19 and neonatal death within two hours of birth. Int J Gynaecol Obstet. 2020 Jul;150(1):126-8.全文 external link opens in a new window摘要 external link opens in a new window

874. Aliji N, Aliu F. Oligohydramnion in COVID19. Eur J Obstet Gynecol Reprod Biol. 2020 Apr 28 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

875. Khalil A, von Dadelszen P, Draycott T, et al. Change in the incidence of stillbirth and preterm delivery during the COVID-19 pandemic. JAMA. 2020 Jul 10 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

876. Huntley BJF, Huntley ES, Di Mascio D, et al. Rates of maternal and perinatal mortality and vertical transmission in pregnancies complicated by severe acute respiratory syndrome coronavirus 2 (SARS-Co-V-2) infection: a systematic review. Obstet Gynecol. 2020 Jun 9 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

877. Martínez-Perez O, Vouga M, Cruz Melguizo S, et al. Association between mode of delivery among pregnant women with COVID-19 and maternal and neonatal outcomes in Spain. JAMA. 2020 Jun 8 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

878. Prabhu M, Cagino K, Matthews KC, et al. Pregnancy and postpartum outcomes in a universally tested population for SARS-CoV-2 in New York City: a prospective cohort study. BJOG. 2020 Jul 7 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

879. Koehler P, Cornely OA, Böttiger BW, et al. COVID-19 associated pulmonary aspergillosis. Mycoses. 2020 Jun;63(6):528-34.全文 external link opens in a new window摘要 external link opens in a new window

880. Blaize M, Mayaux J, Nabet C, et al. Fatal invasive aspergillosis and coronavirus disease in an immunocompetent patient. Emerg Infect Dis. 2020 Apr 28;26(7).全文 external link opens in a new window摘要 external link opens in a new window

881. van Arkel ALE, Rijpstra TA, Belderbos HNA, et al. COVID-19 associated pulmonary aspergillosis. Am J Respir Crit Care Med. 2020 May 12 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

882. Alanio A, Dellière S, Fodil S, et al. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med. 2020 Jun;8(6):e48-9.全文 external link opens in a new window摘要 external link opens in a new window

883. Wang J, Yang Q, Zhang P, et al. Clinical characteristics of invasive pulmonary aspergillosis in patients with COVID-19 in Zhejiang, China: a retrospective case series. Crit Care. 2020 Jun 5;24(1):299.全文 external link opens in a new window摘要 external link opens in a new window

884. Verweij PE, Gangneux JP, Bassetti M, et al. Diagnosing COVID-19-associated pulmonary aspergillosis. Lancet Microbe. 2020 Jul 1;202(1):132-5.全文 external link opens in a new window

885. Wang F, Wang H, Fan J, et al. Pancreatic injury patterns in patients with COVID-19 pneumonia. Gastroenterology. 2020 Apr 1;159(1):367-70.全文 external link opens in a new window摘要 external link opens in a new window

886. Bruno G, Fabrizio C, Santoro CR, et al. Pancreatic injury in the course of coronavirus disease 2019: a not-so-rare occurrence. J Med Virol. 2020 Jun 4 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

887. McNabb-Baltar J, Jin DX, Grover AS, et al. Lipase elevation in patients with COVID-19. Am J Gastroenterol. 2020 Jun 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

888. Gubatan J, Levitte S, Patel A, et al. Prevalence, risk factors and clinical outcomes of COVID-19 in patients with a history of pancreatitis in Northern California. Gut. 2020 Jun 3 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

889. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020 Jul;190(1):29-31.全文 external link opens in a new window摘要 external link opens in a new window

890. Bomhof G, Mutsaers PGNJ, Leebeek FWG, et al. COVID-19-associated immune thrombocytopenia. Br J Haematol. 2020 Jul;190(2):e61-4.全文 external link opens in a new window摘要 external link opens in a new window

891. See Tsao H, Chason HM, Fearon DM, et al. Immune thrombocytopenia (ITP) in a SARS-CoV-2–positive pediatric patient. Pediatrics. 2020 May [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

892. Tang MW, Nur E, Biemond BJ. Immune thrombocytopenia due to COVID-19 during pregnancy. Am J Hematol. 2020 Aug;95(8):E191-2.全文 external link opens in a new window摘要 external link opens in a new window

893. Brancatella A, Ricci D, Viola N, et al. Subacute thyroiditis after SARS-CoV-2 infection. J Clin Endocrinol Metab. 2020 Jul 1;105(7):dgaa276.全文 external link opens in a new window摘要 external link opens in a new window

894. Centre for Evidence-Based Medicine; Greenhalgh T, Treadwell J, Burrow R, et al. NEWS (or NEWS2) score when assessing possible COVID-19 patients in primary care? 2020 [internet publication].全文 external link opens in a new window

895. Centers for Disease Control and Prevention. Interim guidance for public health professionals managing people with COVID-19 in home care and isolation who have pets or other animals. 2020 [internet publication].全文 external link opens in a new window

896. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): COVID-19 and animals. 2020 [internet publication].全文 external link opens in a new window

897. Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020 May 29;368(6494):1016-20.全文 external link opens in a new window摘要 external link opens in a new window

898. IDEXX Laboratories. Leading veterinary diagnostic company sees no COVID-19 cases in pets. 2020 [internet publication].全文 external link opens in a new window

899. Newman A, Smith D, Ghai RR, et al. First reported cases of SARS-CoV-2 infection in companion animals: New York, March-April 2020. MMWR Morb Mortal Wkly Rep. 2020 Jun 12;69(23):710-3.全文 external link opens in a new window摘要 external link opens in a new window

900. Halfmann PJ, Hatta M, Chiba S, et al. Transmission of SARS-CoV-2 in domestic cats. N Engl J Med. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

901. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): if you have pets. 2020 [internet publication].全文 external link opens in a new window

902. Phelan D, Kim JH, Chung EH. A game plan for the resumption of sport and exercise after coronavirus disease 2019 (COVID-19) infection. JAMA Cardiol. 2020 May 13 [Epub ahead of print].全文 external link opens in a new window摘要 external link opens in a new window

内容使用需遵循免责声明