References

Reference articles

1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536-44.Full text external link opens in a new windowAbstract external link opens in a new window

2. World Health Organization. Clinical management of COVID-19: interim guidance. 2020 [internet publication].Full text external link opens in a new window

3. National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. 2020 [internet publication].Full text external link opens in a new window

4. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 17;41(2):145-51.Full text external link opens in a new windowAbstract external link opens in a new window

5. Colaneri M, Sacchi P, Zuccaro V, et al. Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020. Euro Surveill. 2020 Apr;25(16).Full text external link opens in a new windowAbstract external link opens in a new window

6. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. BMJ. 2020 May 22;369:m1985.Full text external link opens in a new windowAbstract external link opens in a new window

7. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19): United States, February 12 - March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):343-6.Full text external link opens in a new windowAbstract external link opens in a new window

8. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. Pediatrics. 2020 Jun;145(6):e20200702.Full text external link opens in a new windowAbstract external link opens in a new window

9. Garazzino S, Montagnani C, Donà D, et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020. Euro Surveill. 2020 May;25(18).Full text external link opens in a new windowAbstract external link opens in a new window

10. Brambilla I, Castagnoli R, Caimmi S, et al. COVID-19 in the pediatric population admitted to a tertiary referral hospital in Northern Italy: preliminary clinical data. Pediatr Infect Dis J. 2020 Jul;39(7):e160.Full text external link opens in a new windowAbstract external link opens in a new window

11. Livingston E, Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA. 2020 Apr 14;323(14):1335.Full text external link opens in a new windowAbstract external link opens in a new window

12. Tagarro A, Epalza C, Santos M, et al. Screening and severity of coronavirus disease 2019 (COVID-19) in children in Madrid, Spain. JAMA Pediatr. 2020 Apr 8 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

13. American Academy of Pediatrics. Children and COVID-19: state-level data report. 2020 [internet publication].Full text external link opens in a new window

14. Swann OV, Holden KA, Turtle L, et al. Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study. BMJ. 2020 Aug 27;370:m3249.Full text external link opens in a new window

15. Mehta NS, Mytton OT, Mullins EWS, et al. SARS-CoV-2 (COVID-19): what do we know about children? A systematic review. Clin Infect Dis. 2020 May 11 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

16. Posfay-Barbe KM, Wagner N, Gauthey M, et al. COVID-19 in children and the dynamics of infection in families. Pediatrics. 2020 Aug;146(2):e20201576.Full text external link opens in a new windowAbstract external link opens in a new window

17. Castagnoli R, Votto M, Licari A, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 2020 Apr 22 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

18. Khalil A, Kalafat E, Benlioglu C, et al. SARS-CoV-2 infection in pregnancy: a systematic review and meta-analysis of clinical features and pregnancy outcomes. EClinicalMedicine. 2020 Jul 3:100446.Full text external link opens in a new windowAbstract external link opens in a new window

19. Knight M, Bunch K, Vousden N, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. BMJ. 2020 Jun 8;369:m2107.Full text external link opens in a new windowAbstract external link opens in a new window

20. Ellington S, Strid P, Tong VT, et al. Characteristics of women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status: United States, January 22 – June 7, 2020. MMWR Morb Mortal Wkly Rep. 2020 Jun 26;69(25):769-75.Full text external link opens in a new windowAbstract external link opens in a new window

21. Gómez-Ochoa SA, Franco OH, Rojas LZ, et al. COVID-19 in healthcare workers: a living systematic review and meta-analysis of prevalence, risk factors, clinical characteristics, and outcomes. Am J Epidemiol. 2020 Sep 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

22. Sahu AK, Amrithanand VT, Mathew R, et al. COVID-19 in health care workers: a systematic review and meta-analysis. Am J Emerg Med. 2020 Jun 6;38(9):1727-31.Full text external link opens in a new windowAbstract external link opens in a new window

23. Torjesen I. Covid-19: one in 10 cases in England occurred in frontline health and social care staff. BMJ. 2020 Jul 7;370:m2717.Full text external link opens in a new windowAbstract external link opens in a new window

24. Kluytmans-van den Bergh MFQ, Buiting AGM, Pas SD, et al. Prevalence and clinical presentation of health care workers with symptoms of coronavirus disease 2019 in 2 Dutch hospitals during an early phase of the pandemic. JAMA Netw Open. 2020 May 1;3(5):e209673.Full text external link opens in a new windowAbstract external link opens in a new window

25. CDC COVID-19 Response Team. Characteristics of health care personnel with COVID-19: United States, February 12 –April 9, 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 17;69(15):477-81.Full text external link opens in a new windowAbstract external link opens in a new window

26. Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020 May 5;133(9):1015-24.Full text external link opens in a new windowAbstract external link opens in a new window

27. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727-33.Full text external link opens in a new windowAbstract external link opens in a new window

28. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22;395(10224):565-74.Full text external link opens in a new windowAbstract external link opens in a new window

29. Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Nat Sci Review. 2020 Mar 3 [Epub ahead of print].Full text external link opens in a new window

30. Young BE, Fong SW, Chan YH, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet. 2020 Aug 18 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

31. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506.Full text external link opens in a new windowAbstract external link opens in a new window

32. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-13.Full text external link opens in a new windowAbstract external link opens in a new window

33. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020 Mar 26;382(13):1199-207.Full text external link opens in a new windowAbstract external link opens in a new window

34. Paraskevis D, Kostaki EG, Magiorkinis G, et al. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020 Jan 29;79:104212.Abstract external link opens in a new window

35. Ji W, Wang W, Zhao X, et al. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020 Apr;92(4):433-40.Full text external link opens in a new windowAbstract external link opens in a new window

36. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020 Apr 6;30(7):1346-51.Full text external link opens in a new windowAbstract external link opens in a new window

37. Lam TT, Shum MH, Zhu HC, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020 Jul;583(7815):282-5.Full text external link opens in a new windowAbstract external link opens in a new window

38. Mallapaty S. Animal source of the coronavirus continues to elude scientists. Nature. 2020 May 18 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

39. Meyerowitz EA, Richterman A, Gandhi RT, et al. Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Ann Intern Med. 2020 Sep 17 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

40. World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions – scientific brief. 2020 [internet publication].Full text external link opens in a new window

41. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020 Apr 16;382(16):1564-7.Full text external link opens in a new windowAbstract external link opens in a new window

42. Guo ZD, Wang ZY, Zhang SF, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. 2020 Apr 10;26(7).Full text external link opens in a new windowAbstract external link opens in a new window

43. Zhou J, Otter JA, Price JR, et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin Infect Dis. 2020 Jul 8 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

44. van Doorn AS, Meijer B, Frampton CMA, et al. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther. 2020 Aug 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

45. Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020 Dec;9(1):386-9.Full text external link opens in a new windowAbstract external link opens in a new window

46. To KK, Tsang OT, Yip CC, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 2020 Jul 28;71(15):841-3.Full text external link opens in a new windowAbstract external link opens in a new window

47. Centre for Evidence-Based Medicine; Ferner RE, Murray PI, Aronson JK. Spreading SARS-CoV-2 through ocular fluids. 2020 [internet publication].Full text external link opens in a new window

48. Sun T, Guan J. Novel coronavirus and central nervous system. Eur J Neurol. 2020 Mar 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

49. Seah IYJ, Anderson DE, Kang AEZ, et al. Assessing viral shedding and infectivity of tears in coronavirus disease 2019 (COVID-19) patients. Ophthalmology. 2020 Jul;127(7):977-9.Full text external link opens in a new windowAbstract external link opens in a new window

50. Farina A, Uccello G, Spreafico M, et al. SARS-CoV-2 detection in the pericardial fluid of a patient with cardiac tamponade. Eur J Intern Med. 2020 Jun;76:100-1.Full text external link opens in a new windowAbstract external link opens in a new window

51. Algarroba GN, Rekawek P, Vahanian SA, et al. Visualization of severe acute respiratory syndrome coronavirus 2 invading the human placenta using electron microscopy. Am J Obstet Gynecol. 2020 Aug;223(2):275-8.Full text external link opens in a new windowAbstract external link opens in a new window

52. Li D, Jin M, Bao P, et al. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open. 2020 May 1;3(5):e208292.Full text external link opens in a new windowAbstract external link opens in a new window

53. Mei F, Bonifazi M, Menzo S, et al. First detection of SARS-CoV-2 by real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay in pleural fluid. Chest. 2020 Jun 11 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

54. Kashi AH, De la Rosette J, Amini E, et al. Urinary viral shedding of COVID-19 and its clinical associations: a systematic review and meta-analysis of observational studies. Urol J. 2020 Sep 5 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

55. Frazier KM, Hooper JE, Mostafa HH, et al. SARS-CoV-2 virus isolated from the mastoid and middle ear: implications for COVID-19 precautions during ear surgery. JAMA Otolaryngol Head Neck Surg. 2020 Jul 23 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

56. Kotlyar A, Grechukhina O, Chen A, et al. Vertical transmission of COVID-19: a systematic review and meta-analysis. Am J Obstet Gynecol. 2020 Jul 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

57. Walker KF, O'Donoghue K, Grace N, et al. Maternal transmission of SARS-COV-2 to the neonate, and possible routes for such transmission: a systematic review and critical analysis. BJOG. 2020 Jun 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

58. Tam PCK, Ly KM, Kernich ML, et al. Detectable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human breast milk of a mildly symptomatic patient with coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2020 May 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

59. Groß R, Conzelmann C, Müller JA, et al. Detection of SARS-CoV-2 in human breastmilk. Lancet. 2020 Jun 6;395(10239):1757-8.Full text external link opens in a new windowAbstract external link opens in a new window

60. Costa S, Posteraro B, Marchetti S, et al. Excretion of Sars-Cov-2 in human breastmilk samples. Clin Microbiol Infect. 2020 Jun 2 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

61. Salvatore CM, Han JY, Acker KP, et al. Neonatal management and outcomes during the COVID-19 pandemic: an observation cohort study. Lancet Child Adolesc Health. 2020 Jul 23 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

62. Zhou Q, Gao Y, Wang X, et al. Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Ann Transl Med. 2020 May;8(10):629.Full text external link opens in a new windowAbstract external link opens in a new window

63. Rickman HM, Rampling T, Shaw K, et al. Nosocomial transmission of COVID-19: a retrospective study of 66 hospital-acquired cases in a London teaching hospital. Clin Infect Dis. 2020 Jun 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

64. Rhee C, Baker M, Vaidya V, et al. Incidence of nosocomial COVID-19 in patients hospitalized at a large US academic medical center. JAMA Netw Open. 2020 Sep 1;3(9):e2020498.Full text external link opens in a new windowAbstract external link opens in a new window

65. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020 Mar 5;382(10):970-71.Full text external link opens in a new windowAbstract external link opens in a new window

66. Kupferschmidt K. Study claiming new coronavirus can be transmitted by people without symptoms was flawed. 2020 [internet publication].Full text external link opens in a new window

67. Tong ZD, Tang A, Li KF, et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang province, China, 2020. Emerg Infect Dis. 2020 May 17;26(5).Full text external link opens in a new windowAbstract external link opens in a new window

68. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020 May;63(5):706-11.Full text external link opens in a new windowAbstract external link opens in a new window

69. Luo SH, Liu W, Liu ZJ, et al. A confirmed asymptomatic carrier of 2019 novel coronavirus (SARS-CoV-2). Chin Med J (Engl). 2020 May 5;133(9):1123-5.Full text external link opens in a new windowAbstract external link opens in a new window

70. Lu S, Lin J, Zhang Z, et al. Alert for non-respiratory symptoms of Coronavirus Disease 2019 (COVID-19) patients in epidemic period: a case report of familial cluster with three asymptomatic COVID-19 patients. J Med Virol. 2020 Mar 19 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

71. Li C, Ji F, Wang L, et al. Asymptomatic and human-to-human transmission of SARS-CoV-2 in a 2-family cluster, Xuzhou, China. Emerg Infect Dis. 2020 Mar 31;26(7).Full text external link opens in a new windowAbstract external link opens in a new window

72. Du Z, Xu X, Wu Y, et al. Serial interval of COVID-19 among publicly reported confirmed cases. Emerg Infect Dis. 2020 Mar 19;26(6).Full text external link opens in a new windowAbstract external link opens in a new window

73. Wei WE, Li Z, Chiew CJ, et al. Presymptomatic transmission of SARS-CoV-2: Singapore, January 23 - March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 10;69(14):411-5.Full text external link opens in a new windowAbstract external link opens in a new window

74. Liu J, Huang J, Xiang D. Large SARS-CoV-2 outbreak caused by asymptomatic traveler, China. Emerg Infect Dis. 2020 Jun 30;29(9).Full text external link opens in a new windowAbstract external link opens in a new window

75. Jiang XL, Zhang XL, Zhao XN, et al. Transmission potential of asymptomatic and paucisymptomatic severe acute respiratory syndrome coronavirus 2 infections: a three-family cluster study in China. 2020 Jun 11;221(12):1948-52.Full text external link opens in a new windowAbstract external link opens in a new window

76. Luo L, Liu D, Liao X, et al. Contact settings and risk for transmission in 3410 close contacts of patients with COVID-19 in Guangzhou, China: a prospective cohort study. Ann Intern Med. 2020 Aug 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

77. World Health Organization. Advice on the use of masks in the context of COVID-19: interim guidance. 2020 [internet publication].Full text external link opens in a new window

78. Gao M, Yang L, Chen X, et al. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir Med. 2020 May 13;169:106026.Full text external link opens in a new windowAbstract external link opens in a new window

79. Chen F, Fu D, Yang Q, et al. Low transmission risk of 9 asymptomatic carriers tested positive for both SARS-CoV-2 nucleic acid and serum IgG. J Infect. 2020 Sep;81(3):452-82.Full text external link opens in a new windowAbstract external link opens in a new window

80. Danis K, Epaulard O, Bénet T, et al. Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, 2020. Clin Infect Dis. 2020 Jul 28;71(15):825-32.Full text external link opens in a new windowAbstract external link opens in a new window

81. He J, Guo Y, Mao R, et al. Proportion of asymptomatic coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Med Virol. 2020 Jul 21 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

82. Al-Sadeq DW, Nasrallah GK. The incidence of the novel coronavirus SARS-CoV-2 among asymptomatic patients: a systematic review. Int J Infect Dis. 2020 Jul 2;98:372-80.Full text external link opens in a new windowAbstract external link opens in a new window

83. Mizumoto K, Kagaya K, Zarebski A, et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020 Mar;25(10).Full text external link opens in a new windowAbstract external link opens in a new window

84. Day M. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. BMJ. 2020 Mar 23;368:m1165.Full text external link opens in a new windowAbstract external link opens in a new window

85. Centre for Evidence-Based Medicine; Heneghan C, Brassey J, Jefferson T. COVID-19: What proportion are asymptomatic? 2020 [internet publication].Full text external link opens in a new window

86. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med. 2020 Jun 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

87. Kimball A, Hatfield KM, Arons M, et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility: King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 3;69(13):377-81.Full text external link opens in a new windowAbstract external link opens in a new window

88. Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N Engl J Med. 2020 May 28;382(22):2081-90.Full text external link opens in a new windowAbstract external link opens in a new window

89. Stubblefield WB, Talbot HK, Feldstein L, et al. Seroprevalence of SARS-CoV-2 among frontline healthcare personnel during the first month of caring for COVID-19 patients – Nashville, Tennessee. Clin Infect Dis. 2020 Jul 6 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

90. Vahidy FS, Bernard DW, Boom ML, et al. Prevalence of SARS-CoV-2 infection among asymptomatic health care workers in the Greater Houston, Texas, area. JAMA Netw Open. 2020 Jul 1;3(7):e2016451.Full text external link opens in a new windowAbstract external link opens in a new window

91. Qiu H, Wu J, Hong L, et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020 Jun;20(6):689-96.Full text external link opens in a new windowAbstract external link opens in a new window

92. Zheng B, Wang H, Yu C. An increasing public health burden arising from children infected with SARS-CoV2: a systematic review and meta-analysis. Pediatr Pulmonol. 2020 Aug 5 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

93. Milani GP, Bottino I, Rocchi A, et al. Frequency of children vs adults carrying severe acute respiratory syndrome coronavirus 2 asymptomatically. JAMA Pediatr. 2020 Sep 14 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

94. Frieden TR, Lee CT. Identifying and interrupting superspreading events: implications for control of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020 Jun;26(6):1059-66.Full text external link opens in a new windowAbstract external link opens in a new window

95. McMichael TM, Clark S, Pogosjans S, et al. COVID-19 in a long-term care facility: King County, Washington, February 27 – March 9, 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):339-42.Full text external link opens in a new windowAbstract external link opens in a new window

96. Moriarty LF, Plucinski MM, Marston BJ, et al. Public health responses to COVID-19 outbreaks on cruise ships: worldwide, February-March 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):347-52.Full text external link opens in a new windowAbstract external link opens in a new window

97. Yang H, Thompson JR. Fighting covid-19 outbreaks in prisons. BMJ. 2020 Apr 2;369:m1362.Full text external link opens in a new windowAbstract external link opens in a new window

98. Rogers JH, Link AC, McCulloch D, et al. Characteristics of COVID-19 in homeless shelters: a community-based surveillance study. Ann Intern Med. 2020 Sep 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

99. Centre for Evidence-Based Medicine; Durand-Moreau Q, Adisesh A, Mackenzie G, et al. What explains the high rate of SARS-CoV-2 transmission in meat and poultry facilities? 2020 [internet publication].Full text external link opens in a new window

100. Donahue M, Sreenivasan N, Stover D, et al. Notes from the field: characteristics of meat processing facility workers with confirmed SARS-CoV-2 infection – Nebraska, April-May 2020. MMWR Morb Mortal Wkly Rep. 2020 Aug 7;69(31):1020-2.Full text external link opens in a new windowAbstract external link opens in a new window

101. Steinberg J, Kennedy ED, Basler C, et al. COVID-19 outbreak among employees at a meat processing facility: South Dakota, March-April 2020. MMWR Morb Mortal Wkly Rep. 2020 Aug 7;69(31):1015-9.Full text external link opens in a new windowAbstract external link opens in a new window

102. Heavey L, Casey G, Kelly C, et al. No evidence of secondary transmission of COVID-19 from children attending school in Ireland, 2020. Euro Surveill. 2020 May;25(21).Full text external link opens in a new windowAbstract external link opens in a new window

103. Stein RA. Super-spreaders in infectious diseases. Int J Infect Dis. 2011 Aug;15(8):e510-3.Full text external link opens in a new windowAbstract external link opens in a new window

104. McAloon C, Collins Á, Hunt K, et al. Incubation period of COVID-19: a rapid systematic review and meta-analysis of observational research. BMJ Open. 2020 Aug 16;10(8):e039652.Full text external link opens in a new windowAbstract external link opens in a new window

105. Liu Y, Gayle AA, Wilder-Smith A, et al. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020 Mar 13;27(2).Full text external link opens in a new windowAbstract external link opens in a new window

106. Xie Y, Wang Z, Liao H, et al. Epidemiologic, clinical, and laboratory findings of the COVID-19 in the current pandemic: systematic review and meta-analysis. BMC Infect Dis. 2020 Aug 31;20(1):640.Full text external link opens in a new windowAbstract external link opens in a new window

107. Centers for Disease Control and Prevention. COVID-19 pandemic planning scenarios. 2020 [internet publication].Full text external link opens in a new window

108. Inglesby TV. Public health measures and the reproduction number of SARS-CoV-2. JAMA. 2020 May 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

109. Burke RM, Midgley CM, Dratch A, et al. Active monitoring of persons exposed to patients with confirmed COVID-19 - United States, January-February 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 6;69(9):245-6.Full text external link opens in a new windowAbstract external link opens in a new window

110. Cheng HY, Jian SW, Liu DP, et al. Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA Intern Med. 2020 May 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

111. Wang Z, Ma W, Zheng X, et al. Household transmission of SARS-CoV-2. J Infect. 2020 Jul;81(1):179-82.Full text external link opens in a new windowAbstract external link opens in a new window

112. Li W, Zhang B, Lu J, et al. The characteristics of household transmission of COVID-19. Clin Infect Dis. 2020 Apr 17 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

113. Zhang W, Cheng W, Luo L, et al. Secondary transmission of coronavirus disease from presymptomatic persons, China. Emerg Infect Dis. 2020 May 26;26(8).Full text external link opens in a new windowAbstract external link opens in a new window

114. Yung CF, Kam KQ, Chong CY, et al. Household transmission of SARS-CoV-2 from adults to children. J Pediatr. 2020 Jul 4 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

115. Macartney K, Quinn HE, Pillsbury AJ, et al. Transmission of SARS-CoV-2 in Australian educational settings: a prospective cohort study. Lancet Child Adolesc Health. 2020 Aug 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

116. Ra SH, Lim JS, Kim G, et al. Upper respiratory viral load in asymptomatic individuals and mildly symptomatic patients with SARS-CoV-2 infection. BMJ Thorax. 2020 Sep 22 [Epub ahead of print].Full text external link opens in a new window

117. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-62.Full text external link opens in a new windowAbstract external link opens in a new window

118. Chang, Mo G, Yuan X, et al. Time kinetics of viral clearance and resolution of symptoms in novel coronavirus infection. Am J Respir Crit Care Med. 2020 May 1;201(9):1150-2.Full text external link opens in a new windowAbstract external link opens in a new window

119. Yang JR, Deng DT, Wu N, et al. Persistent viral RNA positivity during recovery period of a patient with SARS-CoV-2 infection. J Med Virol. 2020 Apr 24 [Epub ahead of print].Abstract external link opens in a new window

120. Jiang X, Luo M, Zou Z, et al. Asymptomatic SARS-CoV-2 infected case with viral detection positive in stool but negative in nasopharyngeal samples lasts for 42 days. J Med Virol. 2020 Apr 24 [Epub ahead of print].Abstract external link opens in a new window

121. Li J, Zhang L, Liu B, et al. Case report: viral shedding for 60 days in a woman with novel coronavirus disease (COVID-19). Am J Trop Med Hyg. 2020 Jun;102(6):1210-3.Full text external link opens in a new windowAbstract external link opens in a new window

122. Sun J, Xiao J, Sun R, et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids. Emerg Infect Dis. 2020 May 8;26(8).Full text external link opens in a new windowAbstract external link opens in a new window

123. Molina LP, Chow SK, Nickel A, et al. Prolonged detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in an obstetric patient with antibody seroconversion. Obstet Gynecol. 2020 Jul 21 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

124. Noh JY, Yoon JG, Seong H, et al. Asymptomatic infection and atypical manifestations of COVID-19: comparison of viral shedding duration. J Infect. 2020 May 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

125. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January – March 2020: retrospective cohort study. BMJ. 2020 Apr 21;369:m1443.Full text external link opens in a new windowAbstract external link opens in a new window

126. Widders A, Broom A, Broom J. SARS-CoV-2: the viral shedding vs infectivity dilemma. Infect Dis Health. 2020 Aug;25(3):210-5.Full text external link opens in a new windowAbstract external link opens in a new window

127. Xu K, Chen Y, Yuan J, et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. Clin Infect Dis. 2020 Jul 28;71(15):799-806.Full text external link opens in a new windowAbstract external link opens in a new window

128. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020 Mar 27;367(6485):1444-8.Full text external link opens in a new windowAbstract external link opens in a new window

129. Chen Y, Guo Y, Pan Y, et al. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020 Feb 17;525(1):135-40.Full text external link opens in a new windowAbstract external link opens in a new window

130. Hanff TC, Harhay MO, Brown TS, et al. Is there an association between COVID-19 mortality and the renin-angiotensin system: a call for epidemiologic investigations. Clin Infect Dis. 2020 Jul 28;71(15):870-4.Full text external link opens in a new windowAbstract external link opens in a new window

131. Wu Z, Hu R, Zhang C, et al. Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. Crit Care. 2020 Jun 5;24(1):290.Full text external link opens in a new windowAbstract external link opens in a new window

132. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020 Apr;14(2):185-92.Full text external link opens in a new windowAbstract external link opens in a new window

133. Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020 May 20;323(23):2427-9.Full text external link opens in a new windowAbstract external link opens in a new window

134. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271-80.Full text external link opens in a new windowAbstract external link opens in a new window

135. Bunyavanich S, Grant C, Vicencio A. Racial/ethnic variation in nasal gene expression of transmembrane serine protease 2 (TMPRSS2). JAMA. 2020 Sep 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

136. Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020 Feb 10;176:104742.Abstract external link opens in a new window

137. Menter T, Haslbauer JD, Nienhold R, et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology. 2020 May 4 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

138. Schaller T, Hirschbühl K, Burkhardt K, et al. Postmortem examination of patients with COVID-19. JAMA. 2020 May 21;323(24):2518-20.Full text external link opens in a new windowAbstract external link opens in a new window

139. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020 May 14 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

140. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020 Jul 9;383(2):120-8.Full text external link opens in a new windowAbstract external link opens in a new window

141. Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020 Jul;8(7):681-6.Full text external link opens in a new windowAbstract external link opens in a new window

142. Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020 Jun 8 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

143. Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med. 2020 Jun 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

144. Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020 Jul 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

145. Dolhnikoff M, Ferreira Ferranti J, de Almeida Monteiro RA, et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020 Aug 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

146. Hanley B, Naresh KN, Roufosse C, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe. 2020 Aug 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

147. Sardu C, Gambardella J, Morelli MB, et al. Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 2020 May 11;9(5): E1417.Full text external link opens in a new windowAbstract external link opens in a new window

148. Tibiriçá E, De Lorenzo A. Increased severity of COVID-19 in people with obesity: are we overlooking plausible biological mechanisms? Obesity (Silver Spring). 2020 May 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

149. Bermejo-Martin JF, Almansa R, Torres A, et al. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc Res. 2020 Aug 1;116(10):e132-3.Full text external link opens in a new windowAbstract external link opens in a new window

150. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020 Aug;7(8):e575-82.Full text external link opens in a new windowAbstract external link opens in a new window

151. Maier CL, Truong AD, Auld SC, et al. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? Lancet. 2020 Jun 6;395(10239):1758-9.Full text external link opens in a new windowAbstract external link opens in a new window

152. van der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020 Jul 24;324(7):1-11.Full text external link opens in a new windowAbstract external link opens in a new window

153. World Health Organization. Public health surveillance for COVID-19: interim guidance. 2020 [internet publication].Full text external link opens in a new window

154. Shen N, Zhu Y, Wang X, et al. Characteristics and diagnosis rate of 5,630 subjects receiving SARS-CoV-2 nucleic acid tests from Wuhan, China. JCI Insight. 2020 May 21;5(10):e137662.Full text external link opens in a new windowAbstract external link opens in a new window

155. de Lusignan S, Dorward J, Correa A, et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. Lancet Infect Dis. 2020 May 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

156. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): older adults. 2020 [internet publication].Full text external link opens in a new window

157. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): people who are at higher risk for severe illness. 2020 [internet publication].Full text external link opens in a new window

158. Bonanad C, García-Blas S, Tarazona-Santabalbina F, et al. The effect of age on mortality in patients with COVID-19: a meta-analysis with 611,583 subjects. J Am Med Dir Assoc. 2020 Jul;21(7):915-8.Full text external link opens in a new windowAbstract external link opens in a new window

159. Burki T. England and Wales see 20 000 excess deaths in care homes. Lancet. 2020 May 23;395(10237):1602.Full text external link opens in a new windowAbstract external link opens in a new window

160. Iacobucci G. Covid-19: Nearly half of care homes in northeast England have had an outbreak. BMJ. 2020 May 20;369:m2041.Full text external link opens in a new windowAbstract external link opens in a new window

161. Graham N, Junghans C, Downes R, et al. SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes. J Infect. 2020 Sep;81(3):411-9.Full text external link opens in a new windowAbstract external link opens in a new window

162. Ortolan A, Lorenzin M, Felicetti M, et al. Does gender influence clinical expression and disease outcomes in COVID-19? A systematic review and meta-analysis. Int J Infect Dis. 2020 Aug 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

163. Montopoli M, Zumerle S, Vettor R, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (n=4532). Ann Oncol. 2020 Aug;31(8):1040-5.Full text external link opens in a new windowAbstract external link opens in a new window

164. Zeng F, Dai C, Cai P, et al. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: a possible reason underlying different outcome between sex. J Med Virol. 2020 May 8 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

165. Takahashi T, Ellingson MK, Wong P, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020 Aug 19 [Epub ahead of print].Full text external link opens in a new window

166. Raisi-Estabragh Z, McCracken C, Bethell MS, et al. Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J Public Health (Oxf). 2020 Aug 18;42(3):451-60.Full text external link opens in a new windowAbstract external link opens in a new window

167. Hull SA, Williams C, Ashworth M, et al. Prevalence of suspected COVID-19 infection in patients from ethnic minority populations: a cross-sectional study in primary care. Br J Gen Pract. 2020 Sep 7 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

168. Alaa AM, Qian Z, Rashbass J, et al. Ethnicity and outcomes of COVID-19 patients in England. 2020 [internet publication].Full text external link opens in a new window

169. Harrison EM, Docherty AB, Barr B, et al; SSRN. Ethnicity and outcomes from COVID-19: the ISARIC CCP-UK prospective observational cohort study of hospitalised patients. 2020 [internet publication].Full text external link opens in a new window

170. Centers for Disease Control and Prevention. COVID-19 in racial and ethnic minority groups. 2020 [internet publication].Full text external link opens in a new window

171. Yehia BR, Winegar A, Fogel R, et al. Association of race with mortality among patients hospitalized with coronavirus disease 2019 (COVID-19) at 92 US hospitals. JAMA Netw Open. 2020 Aug 3;3(8):e2018039.Full text external link opens in a new windowAbstract external link opens in a new window

172. Wortham JM, Lee JT, Althomsons S, et al. Characteristics of persons who died with COVID-19: United States, February 12 – May 18, 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 17;69(28):923-9.Full text external link opens in a new windowAbstract external link opens in a new window

173. Liu H, Chen S, Liu M, et al. Comorbid chronic diseases are strongly correlated with disease severity among COVID-19 patients: a systematic review and meta-analysis. Aging Dis. 2020 May 9;11(3):668-78.Full text external link opens in a new windowAbstract external link opens in a new window

174. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): people with certain medical conditions. 2020 [internet publication].Full text external link opens in a new window

175. Centers for Disease Control and Prevention. COVIDView: a weekly surveillance summary of US COVID-19 activity. 2020 [internet publication].Full text external link opens in a new window

176. Mahumud RA, Kamara JK, Renzaho AMN. The epidemiological burden of and overall distribution of chronic comorbidities in coronavirus disease-2019 among 202,005 infected patients: evidence from a systematic review and meta-analysis. Infection. 2020 Aug 19;1-21.Full text external link opens in a new windowAbstract external link opens in a new window

177. Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus disease 2019 case surveillance: United States, January 22–May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020 Jun 19;69(24):759-65.Full text external link opens in a new windowAbstract external link opens in a new window

178. Adams ML, Katz DL, Grandpre J. Updated estimates of chronic conditions affecting risk for complications from coronavirus disease, United States. Emerg Infect Dis. 2020 Jul 3;26(9).Full text external link opens in a new windowAbstract external link opens in a new window

179. CDC COVID-19 Response Team. Coronavirus disease 2019 in children: United States, February 12 - April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 10;69(14):422-6.Full text external link opens in a new windowAbstract external link opens in a new window

180. DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in children and young adults in the Washington, DC metropolitan region. J Pediatr. 2020 Aug;223:199-203.Full text external link opens in a new windowAbstract external link opens in a new window

181. Adams SH, Park MJ, Schaub JP, et al. Medical vulnerability of young adults to severe COVID-19 illness: data from the National Health Interview Survey. J Adolesc Health. 2020 Jul 9;67(3):362-8.Full text external link opens in a new windowAbstract external link opens in a new window

182. Aggarwal G, Cheruiyot I, Aggarwal S, et al. Association of cardiovascular disease with coronavirus disease 2019 (COVID-19) severity: a meta-analysis. Curr Probl Cardiol. 2020 Apr 28:100617.Full text external link opens in a new windowAbstract external link opens in a new window

183. Pranata R, Lim MA, Huang I, et al. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: a systematic review, meta-analysis and meta-regression. J Renin Angiotensin Aldosterone Syst. 2020 Apr-Jun;21(2):1470320320926899.Full text external link opens in a new windowAbstract external link opens in a new window

184. Zhang J, Wu J, Sun X, et al. Associations of hypertension with the severity and fatality of SARS-CoV-2 infection: a meta-analysis. Epidemiol Infect. 2020 May 28;:1-19.Abstract external link opens in a new window

185. Hussain S, Baxi H, Chand Jamali M, et al. Burden of diabetes mellitus and its impact on COVID-19 patients: a meta-analysis of real-world evidence. Diabetes Metab Syndr. 2020 Aug 20;14(6):1595-602.Full text external link opens in a new windowAbstract external link opens in a new window

186. Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia: a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020 Apr 17;14(4):395-403.Full text external link opens in a new windowAbstract external link opens in a new window

187. Seiglie J, Platt J, Cromer SJ, et al. Diabetes as a risk factor for poor early outcomes in patients hospitalized with COVID-19. Diabetes Care. 2020 Aug 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

188. Chen Y, Yang D, Cheng B, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care. 2020 Jul;43(7):1399-407.Full text external link opens in a new windowAbstract external link opens in a new window

189. Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020 Aug 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

190. Pal R, Banerjee M, Yadav U, et al. Clinical profile and outcomes in COVID-19 patients with diabetic ketoacidosis: a systematic review of literature. Diabetes Metab Syndr. 2020 Aug 18;14(6):1563-9.Full text external link opens in a new windowAbstract external link opens in a new window

191. Agarwal S, Schechter C, Southern W, et al. Preadmission diabetes-specific risk factors for mortality in hospitalized patients with diabetes and coronavirus disease 2019. Diabetes Care. 2020 Aug 7 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

192. Coppelli A, Giannarelli R, Aragona M, et al. Hyperglycemia at hospital admission is associated with severity of the prognosis in patients hospitalized for COVID-19: the Pisa COVID-19 study. Diabetes Care. 2020 Aug 11 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

193. Lee MH, Wong C, Ng CH, et al. Effects of hyperglycaemia on complications of COVID-19: a meta-analysis of observational studies. Diabetes Obes Metab. 2020 Sep 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

194. Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020 Aug 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

195. Li H, Tian S, Chen T, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes Metab. 2020 May 29 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

196. Apicella M, Campopiano MC, Mantuano M, et al. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020 Sep;8(9):782-92.Full text external link opens in a new windowAbstract external link opens in a new window

197. Halpin DMG, Faner R, Sibila O, et al. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir Med. 2020 May;8(5):436-8.Full text external link opens in a new windowAbstract external link opens in a new window

198. Centre for Evidence-Based Medicine; Hartmann-Boyce J, Otunla A, Drake J, et al. Asthma and COVID-19: risks and management considerations. 2020 [internet publication].Full text external link opens in a new window

199. Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. 2020 Jun;167:105941.Full text external link opens in a new windowAbstract external link opens in a new window

200. Wang Y, Chen J, Chen W, et al. Does asthma increase the mortality of patients with COVID-19? A systematic review and meta-analysis. Int Arch Allergy Immunol. 2020 Sep 22;:1-7.Full text external link opens in a new windowAbstract external link opens in a new window

201. Broadhurst R, Peterson R, Wisnivesky JP, et al. Asthma in COVID-19 hospitalizations: an overestimated risk factor? Ann Am Thorac Soc. 2020 Aug 31 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

202. Castro-Rodriguez JA, Forno E. Asthma and COVID-19 in children: a systematic review and call for data. Pediatr Pulmonol. 2020 Jun 18 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

203. Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med. 2020 Jul 10;:1-9.Full text external link opens in a new windowAbstract external link opens in a new window

204. Yu J Ouyang W, Chua ML, et al. SARS-CoV-2 transmission in patients with cancer at a tertiary care hospital in Wuhan, China. JAMA Oncol. 2020 Mar 25;6(7):1108-10.Full text external link opens in a new windowAbstract external link opens in a new window

205. Tian Y, Qiu X, Wang C, et al. Cancer associates with risk and severe events of COVID-19: a systematic review and meta-analysis. Int J Cancer. 2020 Jul 19 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

206. Ofori-Asenso R, Ogundipe O, Agyeman AA, et al. Cancer is associated with severe disease in COVID-19 patients: a systematic review and meta-analysis. Ecancermedicalscience. 2020 May 18;14:1047.Full text external link opens in a new windowAbstract external link opens in a new window

207. Tian J, Yuan X, Xiao J, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020 May 29;21(7):893-903.Full text external link opens in a new windowAbstract external link opens in a new window

208. Giannakoulis VG, Papoutsi E, Siempos II. Effect of cancer on clinical outcomes of patients with COVID-19: a meta-analysis of patient data. JCO Glob Oncol. 2020 Jun;6:799-808.Full text external link opens in a new windowAbstract external link opens in a new window

209. Passamonti F, Cattaneo C, Arcaini L, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol. 2020 Aug 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

210. Lee LYW, Cazier JB, Starkey T, et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. Lancet Oncol. 2020 Aug 24 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

211. Salunke AA, Nandy K, Pathak SK, et al. Impact of COVID -19 in cancer patients on severity of disease and fatal outcomes: a systematic review and meta-analysis. Diabetes Metab Syndr. 2020 Jul 28;14(5):1431-7.Full text external link opens in a new windowAbstract external link opens in a new window

212. Dai M, Liu D, Liu M, et al. Patients with cancer appear more vulnerable to SARS-COV-2: a multi-center study during the COVID-19 outbreak. Cancer Discov. 2020 Jun;10(6):783-91.Full text external link opens in a new windowAbstract external link opens in a new window

213. Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020 Jun 20;395(10241):1907-18.Full text external link opens in a new windowAbstract external link opens in a new window

214. Lee LYW, Cazier JB, Starkey T, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet. 2020 Jun 20;395(10241):1919-26.Full text external link opens in a new windowAbstract external link opens in a new window

215. Yang K, Sheng Y, Huang C, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020 May 29;21(7):904-13.Full text external link opens in a new windowAbstract external link opens in a new window

216. Boulad F, Kamboj M, Bouvier N, et al. COVID-19 in children with cancer in New York City. JAMA Oncol. 2020 May 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

217. Afshar ZM, Dayani M, Naderi M, et al. Fatality rate of COVID-19 in patients with malignancies: a systematic review and meta-analysis. J Infect. 2020 Aug;81(2):e114-6.Full text external link opens in a new windowAbstract external link opens in a new window

218. Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020 Aug 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

219. Du Y, Lv Y, Zha W, et al. Association of body mass index (BMI) with critical COVID-19 and in-hospital mortality: a dose-response meta-analysis. Metabolism. 2020 Sep 16:154373.Full text external link opens in a new windowAbstract external link opens in a new window

220. Tartof SY, Qian L, Hong V, et al. Obesity and mortality among patients diagnosed with COVID-19: results from an integrated health care organization. Ann Intern Med. 2020 Aug 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

221. Savasi VM, Parisi F, Patanè L, et al. Clinical findings and disease severity in hospitalized pregnant women with coronavirus disease 2019 (COVID-19). Obstet Gynecol. 2020 Aug;136(2):252-8.Full text external link opens in a new windowAbstract external link opens in a new window

222. Zachariah P, Johnson CL, Halabi KC, et al. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children's hospital in New York City, New York. JAMA Pediatr. 2020 Jun 3:e202430.Full text external link opens in a new windowAbstract external link opens in a new window

223. Panepinto JA, Brandow A, Mucalo L, et al. Coronavirus disease among persons with sickle cell disease, United States, March 20 – May 21, 2020. Emerg Infect Dis. 2020 Jul 8;26(10).Full text external link opens in a new windowAbstract external link opens in a new window

224. Hussain FA, Njoku FU, Saraf SL, et al. COVID-19 infection in patients with sickle cell disease. Br J Haematol. 2020 Jun;189(5):851-2.Full text external link opens in a new windowAbstract external link opens in a new window

225. Nur E, Gaartman AE, van Tuijn CFJ, et al. Vaso-occlusive crisis and acute chest syndrome in sickle cell disease due to 2019 novel coronavirus disease (COVID-19). Am J Hematol. 2020 Jun;95(6):725-6.Full text external link opens in a new windowAbstract external link opens in a new window

226. Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: initial report from the US epicenter. Am J Transplant. 2020 Jul;20(7):1800-8.Full text external link opens in a new windowAbstract external link opens in a new window

227. Zhu L, Gong N, Liu B, et al. Coronavirus disease 2019 pneumonia in immunosuppressed renal transplant recipients: a summary of 10 confirmed cases in Wuhan, China. Eur Urol. 2020 Jun;77(6):748-54.Full text external link opens in a new windowAbstract external link opens in a new window

228. Akalin E, Azzi Y, Bartash R, et al. Covid-19 and kidney transplantation. N Engl J Med. 2020 Jun 18;382(25):2475-7.Full text external link opens in a new windowAbstract external link opens in a new window

229. Columbia University Kidney Transplant Program. Early description of coronavirus 2019 disease in kidney transplant recipients in New York. J Am Soc Nephrol. 2020 Jun;31(6):1150-6.Full text external link opens in a new windowAbstract external link opens in a new window

230. Banerjee D, Popoola J, Shah S, et al. COVID-19 infection in kidney transplant recipients. Kidney Int. 2020 Jun;97(6):1076-82.Full text external link opens in a new windowAbstract external link opens in a new window

231. Latif F, Farr MA, Clerkin KJ, et al. Characteristics and outcomes of recipients of heart transplant with coronavirus disease 2019. JAMA Cardiol. 2020 May 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

232. Fraser J, Mousley J, Testro A, et al. Clinical presentation, treatment, and mortality rate in liver transplant recipients with coronavirus disease 2019: a systematic review and quantitative analysis. Transplant Proc. 2020 Jul 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

233. Reddy RK, Charles WN, Sklavounos A, et al. The effect of smoking on COVID-19 severity: a systematic review and meta-analysis. J Med Virol. 2020 Aug 4 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

234. Cai G, Bossé Y, Xiao F, et al. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020 Jun 15;201(12):1557-9.Full text external link opens in a new windowAbstract external link opens in a new window

235. World Health Organization. Smoking and COVID-19: scientific brief. 2020 [internet publication].Full text external link opens in a new window

236. Patel U, Malik P, Shah D, et al. Pre-existing cerebrovascular disease and poor outcomes of COVID-19 hospitalized patients: a meta-analysis. J Neurol. 2020 Aug 8 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

237. Kovalic AJ, Satapathy SK, Thuluvath PJ. Prevalence of chronic liver disease in patients with COVID-19 and their clinical outcomes: a systematic review and meta-analysis. Hepatol Int. 2020 Jul 28 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

238. Iavarone M, D'Ambrosio R, Soria A, et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J Hepatol. 2020 Jun 8 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

239. Hariyanto TI, Kurniawan A. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr. 2020 Aug 1;14(5):1463-5.Full text external link opens in a new windowAbstract external link opens in a new window

240. Ji D, Qin E, Xu J, et al. Non-alcoholic fatty liver diseases in patients with COVID-19: a retrospective study. J Hepatol. 2020 Apr 8;73(2):451-3.Full text external link opens in a new windowAbstract external link opens in a new window

241. Sharma P, Kumar A. Metabolic dysfunction associated fatty liver disease increases risk of severe Covid-19. Diabetes Metab Syndr. 2020 Jun 10;14(5):825-7.Full text external link opens in a new windowAbstract external link opens in a new window

242. Targher G, Mantovani A, Byrne CD, et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated fatty liver disease and increased fibrosis scores. Gut. 2020 Aug;69(8):1545-7.Full text external link opens in a new windowAbstract external link opens in a new window

243. Zhou YJ, Zheng KI, Wang XB, et al. Younger patients with MAFLD are at increased risk of severe COVID-19 illness: a multicenter preliminary analysis. J Hepatol. 2020 Sep;73(3):719-21.Full text external link opens in a new windowAbstract external link opens in a new window

244. Doglietto F, Vezzoli M, Gheza F, et al. Factors associated with surgical mortality and complications among patients with and without coronavirus disease 2019 (COVID-19) in Italy. JAMA Surg. 2020 Jun 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

245. Lei S, Jiang F, Su W, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. 2020 Apr 5:100331.Full text external link opens in a new windowAbstract external link opens in a new window

246. COVIDSurg Collaborative. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lancet. 2020 Jul 4;396(10243):27-38.Full text external link opens in a new windowAbstract external link opens in a new window

247. Singh S, Khan A, Chowdhry M, et al. Risk of severe COVID-19 in patients with inflammatory bowel disease in United States: a multicenter research network study. Gastroenterology. 2020 Jun 6 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

248. Gianfrancesco M, Hyrich KL, Al-Adely S, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2020 Jul;79(7):859-66.Full text external link opens in a new windowAbstract external link opens in a new window

249. Centre for Evidence-Based Medicine; Hoang U, Jones NR. Is there an association between exposure to air pollution and severity of COVID-19 infection? 2020 [internet publication].Full text external link opens in a new window

250. Copat C, Cristaldi A, Fiore M, et al. The role of air pollution (PM and NO₂) in COVID-19 spread and lethality: a systematic review. Environ Res. 2020 Aug 24;191:110129.Full text external link opens in a new windowAbstract external link opens in a new window

251. Frontera A, Cianfanelli L, Vlachos K, et al. Severe air pollution links to higher mortality in COVID-19 patients: the “double-hit” hypothesis. J Infect. 2020 Aug;81(2):255-9.Full text external link opens in a new windowAbstract external link opens in a new window

252. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci Total Environ. 2020 Apr 11;726:138605.Full text external link opens in a new windowAbstract external link opens in a new window

253. Wu X, Nethery RC, Sabath BM, et al; medRxiv. Exposure to air pollution and COVID-19 mortality in the United States: a nationwide cross-sectional study. 2020 [internet publication].Full text external link opens in a new window

254. Sajadi MM, Habibzadeh P, Vintzileos A, et al. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020 Jun 1;3(6):e2011834.Full text external link opens in a new windowAbstract external link opens in a new window

255. Centre for Evidence-Based Medicine; Spencer EA, Brassey J, Jefferson T, et al. Environmental weather conditions and influence on transmission of SARS-CoV-2. 2020 [internet publication].Full text external link opens in a new window

256. Mecenas P, Bastos RTDRM, Vallinoto ACR, et al. Effects of temperature and humidity on the spread of COVID-19: a systematic review. PLoS One. 2020;15(9):e0238339.Full text external link opens in a new windowAbstract external link opens in a new window

257. Yao Y, Pan J, Liu Z, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur Respir J. 2020 May 7;55(5):2000517.Full text external link opens in a new windowAbstract external link opens in a new window

258. Baker RE, Yang W, Vecchi GA, et al. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science. 2020 Jul 17;369(6501):315-9.Full text external link opens in a new windowAbstract external link opens in a new window

259. Sehra ST, Salciccioli JD, Wiebe DJ, et al. Maximum daily temperature, precipitation, ultra-violet light and rates of transmission of SARS-Cov-2 in the United States. Clin Infect Dis. 2020 May 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

260. Centre for Evidence-Based Medicine; Heneghan C, Jefferson T. Effect of latitude on COVID-19. 2020 [internet publication].Full text external link opens in a new window

261. Whittemore PB. COVID-19 fatalities, latitude, sunlight, and vitamin D. Am J Infect Control. 2020 Jun 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

262. Meltzer DO, Best TJ, Zhang H, et al. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw Open. 2020 Sep 1;3(9):e2019722.Full text external link opens in a new windowAbstract external link opens in a new window

263. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020 Jul 23 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

264. Lau FH, Majumder R, Torabi R, et al; medRxiv. Vitamin D insufficiency is prevalent in severe COVID-19. 2020 [internet publication].Full text external link opens in a new window

265. Rhodes JM, Subramanian S, Laird E, et al. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther. 2020 Jun;51(12):1434-7.Full text external link opens in a new windowAbstract external link opens in a new window

266. Panarese A, Shahini E. Letter: Covid-19, and vitamin D. Aliment Pharmacol Ther. 2020 May;51(10):993-5.Full text external link opens in a new windowAbstract external link opens in a new window

267. Garg M, Al-Ani A, Mitchell H, et al. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North – supports vitamin D as a factor determining severity. Authors' reply. Aliment Pharmacol Ther. 2020 Jun;51(12):1438-9.Full text external link opens in a new windowAbstract external link opens in a new window

268. Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med Drug Discov. 2020 Apr 29:100041.Full text external link opens in a new windowAbstract external link opens in a new window

269. Goldstein MR, Poland GA, Graeber CW. Are certain drugs associated with enhanced mortality in COVID-19? QJM. 2020 Jul 1;113(7):509-10.Full text external link opens in a new windowAbstract external link opens in a new window

270. Mackey K, King VJ, Gurley S, et al. Risks and impact of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers on SARS-CoV-2 infection in adults: a living systematic review. Ann Intern Med. 2020 Aug 4;173(3):195-203.Full text external link opens in a new windowAbstract external link opens in a new window

271. Mackey K, Kansagara D, Vela K. Update alert 4: risks and impact of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers on SARS-CoV-2 infection in adults. Ann Intern Med. 2020 Sep 22 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

272. Chan CK, Huang YS, Liao HW, et al. Renin-angiotensin-aldosterone system inhibitors and risks of SARS-CoV-2 infection: a systematic review and meta-analysis. Hypertension. 2020 Sep 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

273. Hippisley-Cox J, Young D, Coupland C, et al. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart. 2020 Jul 31 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

274. National Institute for Health and Care Excellence. COVID-19 rapid evidence summary: angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) in people with or at risk of COVID-19. 2020 [internet publication].Full text external link opens in a new window

275. American Heart Association; Heart Failure Society of America; American College of Cardiology. Patients taking ACE-i and ARBs who contract COVID-19 should continue treatment, unless otherwise advised by their physician. 2020 [internet publication].Full text external link opens in a new window

276. European Society of Cardiology Council on Hypertension. Position statement of the ESC Council on Hypertension on ACE-inhibitors and angiotensin receptor blockers. 2020 [internet publication].Full text external link opens in a new window

277. British Cardiovascular Society; British Society for Heart Failure. BSH & BCS joint statement on ACEi or ARB in relation to COVID-19. 2020 [internet publication].Full text external link opens in a new window

278. Kow CS, Hasan SS. Meta-analysis of effect of statins in patients with COVID-19. Am J Cardiol. 2020 Aug 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

279. Zhang XJ, Qin JJ, Cheng X, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 2020 Aug 4;32(2):176-87.Full text external link opens in a new windowAbstract external link opens in a new window

280. Almario CV, Chey WD, Spiegel BMR. Increased risk of COVID-19 among users of proton pump inhibitors. Am J Gastroenterol. 2020 Aug 25 [Epub ahead of print].Abstract external link opens in a new window

281. Lee SW, Ha EK, Yeniova AÖ, et al. Severe clinical outcomes of COVID-19 associated with proton pump inhibitors: a nationwide cohort study with propensity score matching. Gut. 2020 Jul 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

282. Costenaro P, Minotti C, Barbieri E, et al. SARS-CoV-2 infection in people living with HIV: a systematic review. Rev Med Virol. 2020 Sep 1:e2155.Full text external link opens in a new windowAbstract external link opens in a new window

283. Emmi G, Bettiol A, Mattioli I, et al. SARS-CoV-2 infection among patients with systemic autoimmune diseases. Autoimmun Rev. 2020 Jul;19(7):102575.Full text external link opens in a new windowAbstract external link opens in a new window

284. Favalli EG, Gerosa M, Murgo A, et al. Are patients with systemic lupus erythematosus at increased risk for COVID-19? Ann Rheum Dis. 2020 May 25 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

285. Zhong J, Shen G, Yang H, et al. COVID-19 in patients with rheumatic disease in Hubei province, China: a multicentre retrospective observational study. Lancet Rheumatol. 2020 Jul 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

286. Liu M, Gao Y, Zhang Y, et al. The association between severe or dead COVID-19 and autoimmune disease: a systematic review and meta-analysis. J Infect. 2020 Sep;81(3):e93-5.Full text external link opens in a new windowAbstract external link opens in a new window

287. Fredi M, Cavazzana I, Moschetti L, et al. COVID-19 in patients with rheumatic diseases in northern Italy: a single-centre observational and case-control study. Lancet Rheumatol. 2020 Sep;2(9):e549-56.Full text external link opens in a new windowAbstract external link opens in a new window

288. Louapre C, Collongues N, Stankoff B, et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020 Jun 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

289. Aziz M, Fatima R, Haghbin H, et al. The incidence and outcomes of COVID-19 in IBD patients: a rapid review and meta-analysis. Inflamm Bowel Dis. 2020 Jul 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

290. Golinelli D, Boetto E, Maietti E, et al. The association between ABO blood group and SARS-CoV-2 infection: a meta-analysis. PLoS One. 2020 Sep 18;15(9):e0239508.Full text external link opens in a new windowAbstract external link opens in a new window

291. Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020 Jun 17 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

292. Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020 May 13;285:198018.Full text external link opens in a new windowAbstract external link opens in a new window

293. Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020 May 19 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

294. Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. Clin Infect Dis. 2020 Jun 4 [Epub ahead of print].Abstract external link opens in a new window

295. World Health Organization. Infection prevention and control during health care when coronavirus disease (‎COVID-19) is suspected or confirmed: interim guidance. 2020 [internet publication].Full text external link opens in a new window

296. Liu M, Cheng SZ, Xu KW, et al. Use of personal protective equipment against coronavirus disease 2019 by healthcare professionals in Wuhan, China: cross sectional study. BMJ. 2020 Jun 10;369:m2195.Full text external link opens in a new windowAbstract external link opens in a new window

297. Centre for Evidence-Based Medicine; Greenhalgh T, Chan XH, Khunti K, et al. What is the efficacy of standard face masks compared to respirator masks in preventing COVID-type respiratory illnesses in primary care staff? 2020 [internet publication].Full text external link opens in a new window

298. Razai MS, Doerholt K, Ladhani S, et al. Coronavirus disease 2019 (covid-19): a guide for UK GPs. BMJ. 2020 Mar 5;368:m800.Full text external link opens in a new windowAbstract external link opens in a new window

299. World Health Organization. Coronavirus disease (COVID-19) advice for the public. 2020 [internet publication].Full text external link opens in a new window

300. Centers for Disease Control and Prevention. How to protect yourself and others. 2020 [internet publication].Full text external link opens in a new window

301. Centre for Evidence-Based Medicine; Heneghan C, Jefferson T. COVID-19 evidence is lacking for 2 meter distancing. 2020 [internet publication].Full text external link opens in a new window

302. Feng S, Shen C, Xia N, et al. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med. 2020 May;8(5):434-6.Full text external link opens in a new windowAbstract external link opens in a new window

303. Mahase E. Covid-19: what is the evidence for cloth masks? BMJ. 2020 Apr 7;369:m1422.Full text external link opens in a new windowAbstract external link opens in a new window

304. Chou R, Dana T, Jungbauer R, et al. Masks for prevention of respiratory virus infections, including SARS-CoV-2, in health care and community settings: a living rapid review. Ann Intern Med. 2020 Jul 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

305. World Health Organization. Advice on the use of masks for children in the community in the context of COVID-19. 2020 [internet publication].Full text external link opens in a new window

306. Centers for Disease Control and Prevention. Recommendation regarding the use of cloth face coverings, especially in areas of significant community-based transmission. 2020 [internet publication].Full text external link opens in a new window

307. Lazzarino AI, Steptoe A, Hamer M, et al. Covid-19: important potential side effects of wearing face masks that we should bear in mind. BMJ. 2020 May 21;369:m2003.Full text external link opens in a new windowAbstract external link opens in a new window

308. MacIntyre CR, Seale H, Dung TC, et al. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open. 2015 Apr 22;5(4):e006577.Full text external link opens in a new windowAbstract external link opens in a new window

309. Chughtai AA, Seale H, Macintyre CR. Effectiveness of cloth masks for protection against severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020 Jul 8;26(10).Full text external link opens in a new windowAbstract external link opens in a new window

310. Centers for Disease Control and Prevention. Serious adverse health events associated with methanol-based hand sanitizers. 2020 [internet publication].Full text external link opens in a new window

311. Mahmood A, Eqan M, Pervez S, et al. COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Sci Total Environ. 2020 Jun 27;742:140561.Full text external link opens in a new windowAbstract external link opens in a new window

312. Quilty BJ, Clifford S, CMMID nCoV working group2, et al. Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Eurosurveillance. 2020 Feb;25(5).Full text external link opens in a new window

313. Hoehl S, Berger A, Kortenbusch M, et al. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. N Engl J Med. 2020 Mar 26;382(13):1278-80.Full text external link opens in a new windowAbstract external link opens in a new window

314. Kakimoto K, Kamiya H, Yamagishi T, et al. Initial investigation of transmission of COVID-19 among crew members during quarantine of a cruise ship: Yokohama, Japan, February 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 20;69(11):312-3.Full text external link opens in a new windowAbstract external link opens in a new window

315. Mahase E. China coronavirus: what do we know so far? BMJ. 2020 Jan 24;368:m308.Full text external link opens in a new windowAbstract external link opens in a new window

316. Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020 Mar 14;395(10227):912-20.Full text external link opens in a new windowAbstract external link opens in a new window

317. Nussbaumer-Streit B, Mayr V, Dobrescu AI, et al. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. Cochrane Database Syst Rev. 2020 Apr 8;(4):CD013574.Full text external link opens in a new windowAbstract external link opens in a new window

318. Centre for Evidence-Based Medicine; Mahtani KR, Heneghan C, Aronson JK. What is the evidence for social distancing during global pandemics? 2020 [internet publication].Full text external link opens in a new window

319. Lewnard JA, Lo NC. Scientific and ethical basis for social-distancing interventions against COVID-19. Lancet Infect Dis. 2020 Jun;20(6):631-3.Full text external link opens in a new windowAbstract external link opens in a new window

320. Koo JR, Cook AR, Park M, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect Dis. 2020 Jun;20(6):678-88.Full text external link opens in a new windowAbstract external link opens in a new window

321. Public Health England. Guidance on shielding and protecting people who are clinically extremely vulnerable from COVID-19. 2020 [internet publication].Full text external link opens in a new window

322. Mahase E. Covid-19: what do we know so far about a vaccine? BMJ. 2020 Apr 27;369:m1679.Full text external link opens in a new window

323. Burki TK. The Russian vaccine for COVID-19. Lancet Respir Med. 2020 Sep 4 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

324. Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020 Sep 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

325. Padron-Regalado E. Vaccines for SARS-CoV-2: lessons from other coronavirus strains. Infect Dis Ther. 2020 Apr 23;:1-20.Full text external link opens in a new windowAbstract external link opens in a new window

326. Hotez PJ, Corry DB, Bottazzi ME. COVID-19 vaccine design: the Janus face of immune enhancement. Nat Rev Immunol. 2020 Jun;20(6):347-8.Full text external link opens in a new windowAbstract external link opens in a new window

327. Callaway E. Coronavirus vaccine trials have delivered their first results - but their promise is still unclear. Nature. 2020 May;581(7809):363-4.Full text external link opens in a new windowAbstract external link opens in a new window

328. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020 Jun 13;395(10240):1845-54.Full text external link opens in a new windowAbstract external link opens in a new window

329. Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020 Jul 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

330. van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv. 2020 May 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

331. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020 Jul 20;:.Full text external link opens in a new windowAbstract external link opens in a new window

332. AstraZeneca. Statement on AstraZeneca Oxford SARS-CoV-2 vaccine, AZD1222, COVID-19 vaccine trials temporary pause. 2020 [internet publication].Full text external link opens in a new window

333. AstraZeneca. COVID-19 vaccine AZD1222 clinical trials resumed in the UK. 2020 [internet publication].Full text external link opens in a new window

334. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020 Jul 3;369(6499):77-81.Full text external link opens in a new windowAbstract external link opens in a new window

335. Xia S, Duan K, Zhang Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA. 2020 Aug 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

336. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2: preliminary report. N Engl J Med. 2020 Jul 14 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

337. Keech C, Albert G, Cho I, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. 2020 Sep 2 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

338. Mulligan MJ, Lyke KE, Kitchin N, et al; medRxiv. The incidence and outcomes of COVID-19 in IBD patients: a rapid review and meta-analysis phase 1/2 study to describe the safety and immunogenicity of a COVID-19 RNA vaccine candidate (BNT162b1) in adults 18 to 55 years of age: interim report. 2020 [internet publication].Full text external link opens in a new window

339. US Food and Drug Administration. Development and licensure of vaccines to prevent COVID-19. 2020 [internet publication].Full text external link opens in a new window

340. World Health Organization. "Immunity passports" in the context of COVID-19: scientific brief. 2020 [internet publication].Full text external link opens in a new window

341. Kofler N, Baylis F. Ten reasons why immunity passports are a bad idea. Nature. 2020 May;581(7809):379-81.Full text external link opens in a new windowAbstract external link opens in a new window

342. Patanavanich R, Glantz SA. Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine Tob Res. 2020 May 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

343. Department of Health and Social Care. Everyone in the United Kingdom with symptoms now eligible for coronavirus tests. 2020 [internet publication].Full text external link opens in a new window

344. Struyf T, Deeks JJ, Dinnes J, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst Rev. 2020 Jul 7;(7):CD013665.Full text external link opens in a new windowAbstract external link opens in a new window

345. World Health Organization. Diagnostic testing for SARS-CoV-2: interim guidance. 2020 [internet publication].Full text external link opens in a new window

346. Liguoro I, Pilotto C, Bonanni M, et al. SARS-COV-2 infection in children and newborns: a systematic review. Eur J Pediatr. 2020 Jul;179(7):1029-46.Full text external link opens in a new windowAbstract external link opens in a new window

347. World Health Organization. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19: scientific brief. 2020 [internet publication].Full text external link opens in a new window

348. British Society of Thoracic Imaging. Thoracic imaging in COVID-19 infection: guidance for the reporting radiologist - version 2. 2020 [internet publication].Full text external link opens in a new window

349. Yang BY, Barnard LM, Emert JM, et al. Clinical characteristics of patients with coronavirus disease 2019 (COVID-19) receiving emergency medical services in King County, Washington. JAMA Netw Open. 2020 Jul 1;3(7):e2014549.Full text external link opens in a new windowAbstract external link opens in a new window

350. Sommer P, Lukovic E, Fagley E, et al. Initial clinical impressions of the critical care of COVID-19 patients in Seattle, New York City, and Chicago. Anesth Analg. 2020 Jul;131(1):55-60.Full text external link opens in a new windowAbstract external link opens in a new window

351. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020 Jun 11;382(24):2372-4.Full text external link opens in a new windowAbstract external link opens in a new window

352. Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1,420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med. 2020 Apr 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

353. Matar R, Alrahmani L, Monzer N, et al. Clinical presentation and outcomes of pregnant women with COVID-19: a systematic review and meta-analysis. Clin Infect Dis. 2020 Jun 23 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

354. Allotey J, Stallings E, Bonet M, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ. 2020 Sep 1;370:m3320.Full text external link opens in a new windowAbstract external link opens in a new window

355. Lechien JR, Chetrit A, Chekkoury-Idrissi Y, et al. Parotitis-like symptoms associated with COVID-19, France, March-April 2020. Emerg Infect Dis. 2020 Jun 3;26(9).Full text external link opens in a new windowAbstract external link opens in a new window

356. Martín Carreras-Presas C, Amaro Sánchez J, López-Sánchez AF, et al. Oral vesiculobullous lesions associated with SARS-CoV-2 infection. Oral Dis. 2020 May 5 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

357. Marinho PM, Marcos AAA, Romano AC, et al. Retinal findings in patients with COVID-19. Lancet. 2020 May 23;395(10237):1610.Full text external link opens in a new windowAbstract external link opens in a new window

358. Wambier CG, Vaño-Galván S, McCoy J, et al. Androgenetic alopecia present in the majority of hospitalized COVID-19 patients: the "Gabrin sign". J Am Acad Dermatol. 2020 May 21;83(2):680-2.Full text external link opens in a new windowAbstract external link opens in a new window

359. Davis B, Rothrock AN, Swetland S, et al. Viral and atypical respiratory co-infections in COVID-19: a systematic review and meta-analysis. J Am Coll Emerg Physicians Open. 2020 Jun 19 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

360. Lansbury L, Lim B, Baskaran V, et al. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020 May 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

361. Langford BJ, So M, Raybardhan S, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020 Jul 22 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

362. Gayam V, Konala VM, Naramala S, et al. Presenting characteristics, comorbidities, and outcomes of patients coinfected with COVID-19 and Mycoplasma pneumoniae in the USA. J Med Virol. 2020 May 25 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

363. Ding Q, Lu P, Fan Y, et al. The clinical characteristics of pneumonia patients co-infected with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol. 2020 Mar 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

364. Cuadrado-Payán E, Montagud-Marrahi E, Torres-Elorza M, et al. SARS-CoV-2 and influenza virus co-infection. Lancet. 2020 May 16;395(10236):e84.Full text external link opens in a new windowAbstract external link opens in a new window

365. Cui X, Zhao Z, Zhang T, et al. A systematic review and meta-analysis of children with coronavirus disease 2019 (COVID-19). J Med Virol. 2020 Aug 6 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

366. Li Y, Wang H, Wang F, et al. Comparison of hospitalized patients with pneumonia caused by COVID-19 and influenza A in children under 5 years. Int J Infect Dis. 2020 Jun 11;98:80-3.Full text external link opens in a new windowAbstract external link opens in a new window

367. Cook J, Harman K, Zoica B, et al. Horizontal transmission of severe acute respiratory syndrome coronavirus 2 to a premature infant: multiple organ injury and association with markers of inflammation. Lancet Child Adolesc Health. 2020 Jul;4(7):548-51.Full text external link opens in a new windowAbstract external link opens in a new window

368. Shekerdemian LS, Mahmood NR, Wolfe KK, et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr. 2020 May 11 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

369. Williams N, Radia T, Harman K, et al. COVID-19 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review of critically unwell children and the association with underlying comorbidities. Eur J Pediatr. 2020 Sep 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

370. Lorenz N, Treptow A, Schmidt S, et al. Neonatal early-onset infection with SARS-CoV-2 in a newborn presenting with encephalitic symptoms. Pediatr Infect Dis J. 2020 Aug;39(8):e212.Abstract external link opens in a new window

371. Chacón-Aguilar R, Osorio-Cámara JM, Sanjurjo-Jimenez I, et al. COVID-19: fever syndrome and neurological symptoms in a neonate. An Pediatr (Engl Ed). 2020 Apr 27;92(6):373-4.Full text external link opens in a new windowAbstract external link opens in a new window

372. Sinelli MT, Paterlini G, Citterio M, et al. Early neonatal SARS-CoV-2 infection manifesting with hypoxemia requiring respiratory support. Pediatrics. 2020 Jul;146(1):e20201121.Full text external link opens in a new windowAbstract external link opens in a new window

373. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020 May;55(5):1169-74.Full text external link opens in a new windowAbstract external link opens in a new window

374. Ikeuchi K, Saito M, Yamamoto S, et al. Relative bradycardia in patients with mild-to-moderate coronavirus disease, Japan. Emerg Infect Dis. 2020 Jul 1;26(10).Full text external link opens in a new windowAbstract external link opens in a new window

375. Xie J, Tong Z, Guan X, et al. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med. 2020 May;46(5):837-40.Full text external link opens in a new windowAbstract external link opens in a new window

376. Royal College of Physicians. NEWS2 and deterioration in COVID-19. 2020 [internet publication].Full text external link opens in a new window

377. Li LQ, Huang T, Wang YQ, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020 Jun;92(6):577-83.Full text external link opens in a new windowAbstract external link opens in a new window

378. Zhu J, Zhong Z, Ji P, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020 Apr;8(2).Full text external link opens in a new windowAbstract external link opens in a new window

379. Zhang ZL, Hou YL, Li DT, et al. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020 May 23:1-7.Full text external link opens in a new windowAbstract external link opens in a new window

380. Wu H, Zhu H, Yuan C, et al. Clinical and immune features of hospitalized pediatric patients with coronavirus disease 2019 (COVID-19) in Wuhan, China. JAMA Netw Open. 2020 Jun 1;3(6):e2010895.Full text external link opens in a new windowAbstract external link opens in a new window

381. Henry BM, Benoit SW, de Oliveira MHS, et al. Laboratory abnormalities in children with mild and severe coronavirus disease 2019 (COVID-19): a pooled analysis and review. Clin Biochem. 2020 Jul;81:1-8.Full text external link opens in a new windowAbstract external link opens in a new window

382. Kronbichler A, Kresse D, Yoon S, et al. Asymptomatic patients as a source of COVID-19 infections: a systematic review and meta-analysis. Int J Infect Dis. 2020 Jun 17 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

383. Public Health England. COVID-19: investigation and initial clinical management of possible cases. 2020 [internet publication].Full text external link opens in a new window

384. Centers for Disease Control and Prevention. Overview of testing for SARS-CoV-2 (COVID-19). 2020 [internet publication].Full text external link opens in a new window

385. Azzi L, Carcano G, Gianfagna F, et al. Saliva is a reliable tool to detect SARS-CoV-2. J Infect. 2020 Apr 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

386. Williams E, Bond K, Zhang B, et al. Saliva as a non-invasive specimen for detection of SARS-CoV-2. J Clin Microbiol. 2020 Apr 21 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

387. Caulley L, Corsten M, Eapen L, et al. Salivary detection of COVID-19. Ann Intern Med. 2020 Aug 28 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

388. Wyllie AL, Fournier J, Casanovas-Massana A, et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med. 2020 Aug 28 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

389. Centers for Disease Control and Prevention. Interim guidelines for collecting, handling, and testing clinical specimens for COVID-19. 2020 [internet publication].Full text external link opens in a new window

390. Wu X, Cai Y, Huang X, et al. Co-infection with SARS-CoV-2 and influenza A virus in patient with pneumonia, China. Emerg Infect Dis. 2020 Mar 11;26(6).Full text external link opens in a new windowAbstract external link opens in a new window

391. Centre for Evidence-Based Medicine; Jefferson T, Heneghan C, Spencer EA, et al. Are you infectious if you have a positive PCR test result for COVID-19? 2020 [internet publication].Full text external link opens in a new window

392. Jefferson T, Spencer E, Brassey J, et al; medRxiv. Viral cultures for COVID-19 infectivity assessment: systematic review. 2020 [internet publication].Full text external link opens in a new window

393. Floriano I, Silvinato A, Bernardo WM, et al. Accuracy of the polymerase chain reaction (PCR) test in the diagnosis of acute respiratory syndrome due to coronavirus: a systematic review and meta-analysis. Rev Assoc Med Bras (1992). 2020 Jul;66(7):880-8.Full text external link opens in a new windowAbstract external link opens in a new window

394. Watson J, Whiting PF, Brush JE. Interpreting a covid-19 test result. BMJ. 2020 May 12;369:m1808.Full text external link opens in a new windowAbstract external link opens in a new window

395. Public Health Laboratory Network. PHLN statement on nucleic acid test false positive results for SARS-CoV-2. 2020 [internet publication].Full text external link opens in a new window

396. US Food and Drug Administration. CDC 2019-novel coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel. 2020 [internet publication].Full text external link opens in a new window

397. Australian Government Department of Health. COVID-19 testing in Australia: information for health professionals. 2020 [internet publication].Full text external link opens in a new window

398. Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020 May 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

399. Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ. 2020 Sep 8;370:m3325.Full text external link opens in a new windowAbstract external link opens in a new window

400. Centers for Disease Control and Prevention. Interim guidelines for COVID-19 antibody testing. 2020 [internet publication].Full text external link opens in a new window

401. Infectious Diseases Society of America. Infectious Diseases Society of America guidelines on the diagnosis of COVID-19: serologic testing. 2020 [internet publication].Full text external link opens in a new window

402. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020 Jun;26(6):845-8.Full text external link opens in a new windowAbstract external link opens in a new window

403. Qu J, Wu C, Li X, et al. Profile of IgG and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020 Apr 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

404. Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020 Jun 25;(6):CD013652.Full text external link opens in a new windowAbstract external link opens in a new window

405. World Health Organization. Advice on the use of point-of-care immunodiagnostic tests for COVID-19: scientific brief. 2020 [internet publication].Full text external link opens in a new window

406. Lisboa Bastos M, Tavaziva G, Abidi SK, et al. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ. 2020 Jul 1;370:m2516.Full text external link opens in a new windowAbstract external link opens in a new window

407. World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays: interim guidance. 2020 [internet publication].Full text external link opens in a new window

408. Poon LC, Yang H, Kapur A, et al. Global interim guidance on coronavirus disease 2019 (COVID‐19) during pregnancy and puerperium from FIGO and allied partners: information for healthcare professionals. 2020 [internet publication].Full text external link opens in a new window

409. Song F, Shi N, Shan F, et al. Emerging coronavirus 2019-nCoV pneumonia. Radiology. 2020 Feb 6:200274.Full text external link opens in a new windowAbstract external link opens in a new window

410. World Health Organization. Use of chest imaging in COVID-19: a rapid advice guide. 2020 [internet publication].Full text external link opens in a new window

411. Tavare AN, Braddy A, Brill S, et al. Managing high clinical suspicion COVID-19 inpatients with negative RT-PCR: a pragmatic and limited role for thoracic CT. Thorax. 2020 Jul;75(7):537-8.Full text external link opens in a new windowAbstract external link opens in a new window

412. American College of Radiology. ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection. 2020 [internet publication].Full text external link opens in a new window

413. Sun P, Qie S, Liu Z, et al. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis. J Med Virol. 2020 Jun;92(6):612-7.Full text external link opens in a new windowAbstract external link opens in a new window

414. Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020 Feb 27 [Epub ahead of print].Abstract external link opens in a new window

415. Tsikala Vafea M, Atalla E, Kalligeros M, et al. Chest CT findings in asymptomatic cases with COVID-19: a systematic review and meta-analysis. Clin Radiol. 2020 Aug 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

416. Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020 Apr;80(4):388-93.Full text external link opens in a new windowAbstract external link opens in a new window

417. Long C, Xu H, Shen Q, et al. Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020 Mar 25;126:108961.Full text external link opens in a new windowAbstract external link opens in a new window

418. Ojha V, Mani A, Pandey NN, et al. CT in coronavirus disease 2019 (COVID-19): a systematic review of chest CT findings in 4410 adult patients. Eur Radiol. 2020 May 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

419. Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin Infect Dis. 2020 Mar 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

420. Kumar J, Meena J, Yadav A, et al. Radiological findings of COVID-19 in children: a systematic review and meta-analysis. J Trop Pediatr. 2020 Jul 21 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

421. Park GS, Ku K, Baek SH, et al. Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2. J Mol Diagn. 2020 Jun;22(6):729-35.Full text external link opens in a new windowAbstract external link opens in a new window

422. Baek YH, Um J, Antigua KJC, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg Microbes Infect. 2020 Apr 20:1-31.Full text external link opens in a new windowAbstract external link opens in a new window

423. Lu R, Wu X, Wan Z, et al. A novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Int J Mol Sci. 2020 Apr 18;21(8).Full text external link opens in a new windowAbstract external link opens in a new window

424. Mohamed MFH, Al-Shokri S, Yousaf Z, et al. Frequency of abnormalities detected by point-of-care lung ultrasound in symptomatic COVID-19 patients: systematic review and meta-analysis. Am J Trop Med Hyg. 2020 Jun 2 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

425. Moro F, Buonsenso D, Moruzzi MC, et al. How to perform lung ultrasound in pregnant women with suspected COVID-19 infection. Ultrasound Obstet Gynecol. 2020 May;55(5):593-8.Full text external link opens in a new windowAbstract external link opens in a new window

426. Denina M, Scolfaro C, Silvestro E, et al. Lung ultrasound in children with COVID-19. Pediatrics. 2020 Jul;146(1):e20201157.Full text external link opens in a new windowAbstract external link opens in a new window

427. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 Apr 30;382(18):1708-20.Full text external link opens in a new windowAbstract external link opens in a new window

428. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020 Apr 23;382(17):1663-5.Full text external link opens in a new windowAbstract external link opens in a new window

429. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Feb 7;323(11):1061-9.Full text external link opens in a new windowAbstract external link opens in a new window

430. Grant MC, Geoghegan L, Arbyn M, et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS One. 2020 Jun 23;15(6):e0234765.Full text external link opens in a new windowAbstract external link opens in a new window

431. Agyeman AA, Chin KL, Landersdorfer CB, et al. Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis. Mayo Clin Proc. 2020 Aug;95(8):1621-31.Full text external link opens in a new windowAbstract external link opens in a new window

432. Eliezer M, Hautefort C, Hamel AL, et al. Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020 Apr 8 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

433. Boscolo-Rizzo P, Borsetto D, Fabbris C, et al. Evolution of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol Head Neck Surg. 2020 Jul 2 [Epub ahead of print].Abstract external link opens in a new window

434. Tariq R, Saha S, Furqan F, et al. Prevalence and mortality of COVID-19 patients with gastrointestinal symptoms: a systematic review and meta-analysis. Mayo Clin Proc. 2020 Aug;95(8):1632-48.Full text external link opens in a new windowAbstract external link opens in a new window

435. Chen A, Agarwal A, Ravindran N, et al. Are gastrointestinal symptoms specific for COVID-19 infection? A prospective case-control study from the United States. Gastroenterology. 2020 May 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

436. Guotao L, Xingpeng Z, Zhihui D, et al. SARS-CoV-2 infection presenting with hematochezia. Med Mal Infect. 2020 May;50(3):293-6.Full text external link opens in a new windowAbstract external link opens in a new window

437. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020 Jun 4;382(23):2268-70.Full text external link opens in a new windowAbstract external link opens in a new window

438. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020 Mar 26;368:m1091.Full text external link opens in a new windowAbstract external link opens in a new window

439. Inomata T, Kitazawa K, Kuno T, et al. Clinical and prodromal ocular symptoms in coronavirus disease: a systematic review and meta-analysis. Invest Ophthalmol Vis Sci. 2020 Aug 3;61(10):29.Full text external link opens in a new windowAbstract external link opens in a new window

440. Ma N, Li P, Wang X, et al. Ocular manifestations and clinical characteristics of children with laboratory-confirmed COVID-19 in Wuhan, China. JAMA Ophthalmol. 2020 Aug 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

441. Bandhala Rajan M, Kumar-M P, Bhardwaj A. The trend of cutaneous lesions during COVID-19 pandemic: lessons from a meta-analysis and systematic review. Int J Dermatol. 2020 Sep 16 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

442. Bataille V, Visconti A, Rossi R, et al; medRxiv. Diagnostic value of skin manifestation of SARS-CoV-2 infection. 2020 [internet publication].Full text external link opens in a new window

443. Casey K, Iteen A, Nicolini R, et al. COVID-19 pneumonia with hemoptysis: acute segmental pulmonary emboli associated with novel coronavirus infection. Am J Emerg Med. 2020 Jul;38(7):1544.Full text external link opens in a new windowAbstract external link opens in a new window

444. Centers for Disease Control and Prevention. CDC’s diagnostic multiplex assay for flu and COVID-19 and supplies. 2020 [internet publication].Full text external link opens in a new window

445. Danwang C, Endomba FT, Nkeck JR, et al. A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19). Biomark Res. 2020 Aug 31;8:37.Full text external link opens in a new windowAbstract external link opens in a new window

446. Foy BH, Carlson JCT, Reinertsen E, et al. Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection. JAMA Netw Open. 2020 Sep 1;3(9):e2022058.Full text external link opens in a new windowAbstract external link opens in a new window

447. Huang W, Berube J, McNamara M, et al. Lymphocyte subset counts in COVID-19 patients: a meta-analysis. Cytometry A. 2020 Jun 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

448. Chen W, Li Z, Yang B, et al. Delayed-phase thrombocytopenia in patients of coronavirus disease 2019 (COVID-19). Br J Haematol. 2020 May 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

449. Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020 Jun 1;3(6):e2011122.Full text external link opens in a new windowAbstract external link opens in a new window

450. Liu J, Han P, Wu J, et al. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J Infect Public Health. 2020 Jun 22 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

451. Ceriello A. Hyperglycemia and the worse prognosis of COVID-19: why a fast blood glucose control should be mandatory. Diabetes Res Clin Pract. 2020 Apr 29;163:108186.Full text external link opens in a new windowAbstract external link opens in a new window

452. Bode B, Garrett V, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020 May 9:1932296820924469.Full text external link opens in a new windowAbstract external link opens in a new window

453. Iacobellis G, Penaherrera CA, Bermudez LE, et al. Admission hyperglycemia and radiological findings of SARS-CoV2 in patients with and without diabetes. Diabetes Res Clin Pract. 2020 May 1;164:108185.Full text external link opens in a new windowAbstract external link opens in a new window

454. Shah S, Shah K, Patel SB, et al. Elevated D-dimer levels are associated with increased risk of mortality in COVID-19: a systematic review and meta-analysis. Cardiol Rev. 2020 Jul 2 [Epub ahead of print].Abstract external link opens in a new window

455. Leonard-Lorant I, Delabranche X, Severac F, et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology. 2020 Apr 23:201561.Full text external link opens in a new windowAbstract external link opens in a new window

456. Mucha SR, Dugar S, McCrae K, et al. Coagulopathy in COVID-19. Cleve Clin J Med. 2020 May 14 [Epub ahead of print].Abstract external link opens in a new window

457. Han H, Xie L, Liu R, et al. Analysis of heart injury laboratory parameters in 273 COVID-19 patients in one hospital in Wuhan, China. J Med Virol. 2020 Mar 31 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

458. Aboughdir M, Kirwin T, Abdul Khader A, et al. Prognostic value of cardiovascular biomarkers in COVID-19: a review. Viruses. 2020 May 11;12(5).Full text external link opens in a new windowAbstract external link opens in a new window

459. Soraya GV, Ulhaq ZS. Interleukin-6 levels in children developing SARS-CoV-2 infection. Pediatr Neonatol. 2020 May 4 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

460. National Institute for Health and Care Excellence. COVID-19 rapid guideline: antibiotics for pneumonia in adults in hospital. 2020 [internet publication].Full text external link opens in a new window

461. Metlay JP, Waterer GW. Treatment of community-acquired pneumonia during the coronavirus disease 2019 (COVID-19) pandemic. Ann Intern Med. 2020 May 7 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

462. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-4.Full text external link opens in a new windowAbstract external link opens in a new window

463. Fu J, Huang PP, Zhang S, et al. The value of serum amyloid A for predicting the severity and recovery of COVID-19. Exp Ther Med. 2020 Oct;20(4):3571-7.Full text external link opens in a new windowAbstract external link opens in a new window

464. Kim H, Hong H, Yoon SH. Diagnostic performance of CT and reverse transcriptase-polymerase chain reaction for coronavirus disease 2019: a meta-analysis. Radiology. 2020 Apr 17:201343.Full text external link opens in a new windowAbstract external link opens in a new window

465. Lv M, Wang M, Yang N, et al. Chest computed tomography for the diagnosis of patients with coronavirus disease 2019 (COVID-19): a rapid review and meta-analysis. Ann Transl Med. 2020 May;8(10):622.Full text external link opens in a new windowAbstract external link opens in a new window

466. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020 Feb 26:200642.Full text external link opens in a new windowAbstract external link opens in a new window

467. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing suspected or confirmed pneumonia in adults in the community. 2020 [internet publication].Full text external link opens in a new window

468. Centre for Evidence-Based Medicine; Heneghan C, Pluddemann A, Mahtani KR. Differentiating viral from bacterial pneumonia. 2020 [internet publication].Full text external link opens in a new window

469. Hani C, Trieu NH, Saab I, et al. COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagn Interv Imaging. 2020 May;101(5):263-8.Full text external link opens in a new windowAbstract external link opens in a new window

470. Solomon DA, Sherman AC, Kanjilal S. Influenza in the COVID-19 era. JAMA. 2020 Aug 14 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

471. Song X, Delaney M, Shah RK, et al. Comparison of clinical features of COVID-19 vs seasonal influenza A and B in US children. JAMA Netw Open. 2020 Sep 1;3(9):e2020495.Full text external link opens in a new windowAbstract external link opens in a new window

472. Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J, et al. Acute-onset smell and taste disorders in the context of Covid-19: a pilot multicenter PCR-based case-control study. Eur J Neurol. 2020 Apr 22 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

473. Liu M, Zeng W, Wen Y, et al. COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia. Eur Radiol. 2020 May 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

474. Yin Z, Kang Z, Yang D, et al. A comparison of clinical and chest CT findings in patients with influenza A (H1N1) virus infection and coronavirus disease (COVID-19). AJR Am J Roentgenol. 2020 May 26:1-7.Full text external link opens in a new windowAbstract external link opens in a new window

475. Luo Y, Yuan X, Xue Y, et al. Using the diagnostic model based on routine laboratory tests to distinguish patients infected with SARS-CoV-2 from those infected with influenza virus. Int J Infect Dis. 2020 May 1;95:436-40.Full text external link opens in a new windowAbstract external link opens in a new window

476. Zarei F, Reza J, Sefidbakht S, et al. Aspiration pneumonia or COVID-19 infection: a diagnostic challenge. Acad Radiol. 2020 May 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

477. National Institute for Health and Care Excellence. COVID-19 rapid guideline: delivery of systemic anticancer treatments. 2020 [internet publication].Full text external link opens in a new window

478. World Health Organization. Home care for patients with suspected or confirmed COVID-19 and management of their contacts: interim guidance. 2020 [internet publication].Full text external link opens in a new window

479. World Health Organization. Updated WHO recommendations for international traffic in relation to COVID-19 outbreak. February 2020 [internet publication].Full text external link opens in a new window

480. Arima Y, Shimada T, Suzuki M, et al. Severe acute respiratory syndrome coronavirus 2 infection among returnees to Japan from Wuhan, China, 2020. Emerg Infect Dis. 2020 Apr 10;26(7).Full text external link opens in a new windowAbstract external link opens in a new window

481. Kwon KT, Ko JH, Shin H, et al. Drive-through screening center for COVID-19: a safe and efficient screening system against massive community outbreak. J Korean Med Sci. 2020 Mar 23;35(11):e123.Full text external link opens in a new windowAbstract external link opens in a new window

482. Medicines and Healthcare products Regulatory Agency. Don’t rely on temperature screening products for detection of coronavirus (COVID-19), says MHRA. 2020 [internet publication].Full text external link opens in a new window

483. National Institute for Health and Care Excellence. COVID-19 rapid guideline: critical care in adults. 2020 [internet publication].Full text external link opens in a new window

484. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing symptoms (including at the end of life) in the community. 2020 [internet publication].Full text external link opens in a new window

485. World Health Organization. Corticosteroids for COVID-19: living guidance. 2020 [internet publication].Full text external link opens in a new window

486. Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ. 2020 Jul 30;370:m2980.Full text external link opens in a new windowAbstract external link opens in a new window

487. Bhimraj A, Morgan RL, Hirsch Shumaker A, et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19 infection. 2020 [internet publication].Full text external link opens in a new window

488. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020 May 22;369:m1966.Full text external link opens in a new windowAbstract external link opens in a new window

489. Kilaru AS, Lee K, Snider CK, et al. Return hospital admissions among 1419 covid-19 patients discharged from five US emergency departments. Acad Emerg Med. 2020 Aug 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

490. Götzinger F, Santiago-García B, Noguera-Julián A, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020 Jun 25 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

491. Abate SM, Ahmed Ali S, Mantfardo B, et al. Rate of intensive care unit admission and outcomes among patients with coronavirus: a systematic review and meta-analysis. PLoS One. 2020 Jul 10;15(7):e0235653.Full text external link opens in a new windowAbstract external link opens in a new window

492. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle region: case series. N Engl J Med. 2020 Mar 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

493. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ. 2020 May 29;369:m1996.Full text external link opens in a new windowAbstract external link opens in a new window

494. Centers for Disease Control and Prevention. Discontinuation of isolation for persons with COVID-19 not in healthcare settings. 2020 [internet publication].Full text external link opens in a new window

495. Public Health England. Guidance for stepdown of infection control precautions and discharging COVID-19 patients. 2020 [internet publication].Full text external link opens in a new window

496. European Medicines Agency. EMA gives advice on the use of non-steroidal anti-inflammatories for COVID-19. 2020 [internet publication].Full text external link opens in a new window

497. US Food and Drug Administration. FDA advises patients on use of non-steroidal anti-inflammatory drugs (NSAIDs) for COVID-19. 2020 [internet publication].Full text external link opens in a new window

498. Little P. Non-steroidal anti-inflammatory drugs and covid-19. BMJ. 2020 Mar 27;368:m1185.Full text external link opens in a new windowAbstract external link opens in a new window

499. Medicines and Healthcare products Regulatory Agency; Commission on Human Medicines. Commission on Human Medicines advice on ibuprofen and coronavirus (COVID-19). 2020 [internet publication].Full text external link opens in a new window

500. World Health Organization. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with COVID-19: scientific brief. 2020 [internet publication].Full text external link opens in a new window

501. National Institute for Health and Care Excellence. COVID-19 rapid evidence summary: acute use of non-steroidal anti-inflammatory drugs (NSAIDs) for people with or at risk of COVID-19. 2020 [internet publication].Full text external link opens in a new window

502. Abuelgasim H, Albury C, Lee J. Effectiveness of honey for symptomatic relief in upper respiratory tract infections: a systematic review and meta-analysis. BMJ Evid Based Med. 2020 Aug 18 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

503. Whitcroft KL, Hummel T. Olfactory dysfunction in COVID-19: diagnosis and management. JAMA. 2020 May 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

504. Centers for Disease Control and Prevention. Discontinuation of transmission-based precautions and disposition of patients with COVID-19 in healthcare settings (interim guidance). 2020 [internet publication].Full text external link opens in a new window

505. Hewitt J, Carter B, Vilches-Moraga A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health. 2020 Jun 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

506. Centre for Evidence-Based Medicine; Allsop M, Ziegler L, Fu Y, et al. Is oxygen an effective treatment option to alleviate the symptoms of breathlessness for patients dying with COVID-19 and what are the potential harms? 2020 [internet publication].Full text external link opens in a new window

507. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020 May;46(5):854-87.Full text external link opens in a new windowAbstract external link opens in a new window

508. NHS England. Clinical guide for the optimal use of oxygen therapy during the coronavirus pandemic. 2020 [internet publication].Full text external link opens in a new window

509. Dondorp AM, Hayat M, Aryal D, et al. Respiratory support in novel coronavirus disease (COVID-19) patients, with a focus on resource-limited settings. Am J Trop Med Hyg. 2020 Apr 21 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

510. Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, non-intubated patients in the emergency department: a single ED's experience during the COVID-19 pandemic. Acad Emerg Med. 2020 May;27(5):375-8.Full text external link opens in a new windowAbstract external link opens in a new window

511. Ng Z, Tay WC, Ho CHB. Awake prone positioning for non-intubated oxygen dependent COVID-19 pneumonia patients. Eur Respir J. 2020 May 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

512. Golestani-Eraghi M, Mahmoodpoor A. Early application of prone position for management of Covid-19 patients. J Clin Anesth. 2020 May 26;66:109917.Full text external link opens in a new windowAbstract external link opens in a new window

513. Thompson AE, Ranard BL, Wei Y, et al. Prone positioning in awake, nonintubated patients with COVID-19 hypoxemic respiratory failure. JAMA Intern Med. 2020 Jun 17 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

514. Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med. 2020 Jun 19 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

515. Mojoli F, Mongodi S, Orlando A, et al. Our recommendations for acute management of COVID-19. Crit Care. 2020 May 8;24(1):207.Full text external link opens in a new windowAbstract external link opens in a new window

516. Centre for Evidence-Based Medicine; Jones L, Candy B, Roberts N, et al. How can healthcare workers adapt non-pharmacological treatment – whilst maintaining safety – when treating people with COVID-19 and delirium? 2020 [internet publication].Full text external link opens in a new window

517. Public Health England. Mouth care for hospitalised patients with confirmed or suspected COVID-19. 2020 [internet publication].Full text external link opens in a new window

518. Barnes GD, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the Anticoagulation Forum. J Thromb Thrombolysis. 2020 May 21 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

519. Moores LK, Tritschler T, Brosnahan S, et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST guideline and expert panel report. Chest. 2020 Jun 2 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

520. American Society Of Hematology. COVID-19 and VTE/anticoagulation: frequently asked questions. 2020 [internet publication].Full text external link opens in a new window

521. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020 Apr 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

522. Nadkarni GN, Lala A, Bagiella E, et al. Anticoagulation, mortality, bleeding and pathology among patients hospitalized with COVID-19: a single health system study. J Am Coll Cardiol. 2020 Aug 24 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

523. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne JAC, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020 Sep 2 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

524. Lamontagne F, Agoritsas T, Macdonald H, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020 Sep 4;370:m3379.Full text external link opens in a new windowAbstract external link opens in a new window

525. European Medicines Agency. EMA endorses use of dexamethasone in COVID-19 patients on oxygen or mechanical ventilation. 2020 [internet publication].Full text external link opens in a new window

526. European Medicines Agency. First COVID-19 treatment recommended for EU authorisation. 2020 [internet publication].Full text external link opens in a new window

527. US Food and Drug Administration. COVID-19 update: FDA broadens emergency use authorization for veklury (remdesivir) to include all hospitalized patients for treatment of COVID-19. 2020 [internet publication].Full text external link opens in a new window

528. Rochwerg B, Agarwal A, Zeng L, et al. Remdesivir for severe covid-19: a clinical practice guideline. BMJ. 2020 Jul 30;370:m2924.Full text external link opens in a new windowAbstract external link opens in a new window

529. National Institute for Health and Care Excellence. COVID 19 rapid evidence summary: remdesivir for treating hospitalised patients with suspected or confirmed COVID-19. 2020 [internet publication].Full text external link opens in a new window

530. Canelli R, Connor CW, Gonzalez M, et al. Barrier enclosure during endotracheal intubation. N Engl J Med. 2020 May 14;382(20):1957-8.Full text external link opens in a new windowAbstract external link opens in a new window

531. Matava CT, Yu J, Denning S. Clear plastic drapes may be effective at limiting aerosolization and droplet spray during extubation: implications for COVID-19. Can J Anaesth. 2020 Apr 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

532. Lucchini A, Giani M, Isgrò S, et al. The "helmet bundle" in COVID-19 patients undergoing non invasive ventilation. Intensive Crit Care Nurs. 2020 Apr 2:102859.Full text external link opens in a new windowAbstract external link opens in a new window

533. Adir Y, Segol O, Kompaniets D, et al. Covid19: minimising risk to healthcare workers during aerosol producing respiratory therapy using an innovative constant flow canopy. Eur Respir J. 2020 Apr 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

534. McEnery T, Gough C, Costello RW. COVID-19: respiratory support outside the intensive care unit. Lancet Respir Med. 2020 Apr 9 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

535. NHS England. Guidance for the role and use of non-invasive respiratory support in adult patients with COVID19 (confirmed or suspected). 2020 [internet publication].Full text external link opens in a new window

536. Li J, Fink JB, Ehrmann S. High-flow nasal cannula for COVID-19 patients: low risk of bio-aerosol dispersion. Eur Respir J. 2020 May 14;55(5):2000892.Full text external link opens in a new windowAbstract external link opens in a new window

537. Schünemann HJ, Khabsa J, Solo K, et al. Ventilation techniques and risk for transmission of coronavirus disease, including COVID-19. Ann Intern Med. 2020 May 22 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

538. Mahase E. Covid-19: most patients require mechanical ventilation in first 24 hours of critical care. BMJ. 2020 Mar 24;368:m1201.Full text external link opens in a new windowAbstract external link opens in a new window

539. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020 Jun 6;395(10239):1763-70.Full text external link opens in a new windowAbstract external link opens in a new window

540. NHS England. Clinical guide for the management of critical care for adults with COVID-19 during the coronavirus pandemic. 2020 [internet publication].Full text external link opens in a new window

541. Gattinoni L, Coppola S, Cressoni M, et al. Covid-19 does not lead to a "typical" acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020 May 15;201(10):1299-300.Full text external link opens in a new windowAbstract external link opens in a new window

542. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020 Apr 16;24(1):154.Full text external link opens in a new windowAbstract external link opens in a new window

543. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Apr 14 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

544. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020 Apr 24 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

545. Rello J, Storti E, Belliato M, et al. Clinical phenotypes of SARS-CoV-2: implications for clinicians and researchers. Eur Respir J. 2020 Apr 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

546. Tsolaki V, Siempos I, Magira E, et al. PEEP levels in COVID-19 pneumonia. Crit Care. 2020 Jun 6;24(1):303.Full text external link opens in a new windowAbstract external link opens in a new window

547. Bos LD, Paulus F, Vlaar APJ, et al. Subphenotyping ARDS in COVID-19 patients: consequences for ventilator management. Ann Am Thorac Soc. 2020 May 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

548. Jain A, Doyle DJ. Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Med. 2020 May 18;:1-2.Full text external link opens in a new windowAbstract external link opens in a new window

549. Rice TW, Janz DR. In defense of evidence-based medicine for the treatment of COVID-19 ARDS. Ann Am Thorac Soc. 2020 Apr 22 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

550. Carsetti A, Damia Paciarini A, Marini B, et al. Prolonged prone position ventilation for SARS-CoV-2 patients is feasible and effective. Crit Care. 2020 May 15;24(1):225.Full text external link opens in a new windowAbstract external link opens in a new window

551. Pan C, Chen L, Lu C, et al. Lung recruitability in SARS-CoV-2 associated acute respiratory distress syndrome: a single-center, observational study. Am J Respir Crit Care Med. 2020 May 15;201(10):1294-7.Full text external link opens in a new windowAbstract external link opens in a new window

552. Sartini C, Tresoldi M, Scarpellini P, et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA. 2020 May 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

553. Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020 May 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

554. American Thoracic Society; Wilson KC, Chotirmall SH, Bai C, et al. COVID‐19: interim guidance on management pending empirical evidence. 2020 [internet publication].Full text external link opens in a new window

555. Ramanathan K, Antognini D, Combes A, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020 May;8(5):518-26.Full text external link opens in a new windowAbstract external link opens in a new window

556. NHS England. Clinical guide for extra corporeal membrane oxygenation (ECMO) for respiratory failure in adults during the coronavirus pandemic. 2020 [internet publication].Full text external link opens in a new window

557. Zeng Y, Cai Z, Xianyu Y, et al. Prognosis when using extracorporeal membrane oxygenation (ECMO) for critically ill COVID-19 patients in China: a retrospective case series. Crit Care. 2020 Apr 15;24(1):148.Full text external link opens in a new windowAbstract external link opens in a new window

558. Jacobs JP, Stammers AH, St Louis J, et al. Extracorporeal membrane oxygenation in the treatment of severe pulmonary and cardiac compromise in COVID-19: experience with 32 patients. ASAIO J. 2020 Apr 17 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

559. Schmidt M, Hajage D, Lebreton G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 2020 Aug 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

560. Mustafa AK, Alexander PJ, Joshi DJ, et al. Extracorporeal membrane oxygenation for patients with COVID-19 in severe respiratory failure. JAMA Surg. 2020 Aug 11 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

561. Chen L, Jiang H, Zhao Y. Pregnancy with Covid-19: management considerations for care of severe and critically ill cases. Am J Reprod Immunol. 2020 Jul 4:e13299.Full text external link opens in a new windowAbstract external link opens in a new window

562. Campbell KH, Tornatore JM, Lawrence KE, et al. Prevalence of SARS-CoV-2 among patients admitted for childbirth in Southern Connecticut. JAMA. 2020 May 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

563. Fassett MJ, Lurvey LD, Yasumura L, et al. Universal SARS-Cov-2 screening in women admitted for delivery in a large managed care organization. Am J Perinatol. 2020 Jul 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

564. Bianco A, Buckley AB, Overbey J, et al. Testing of patients and support persons for coronavirus disease 2019 (COVID-19) infection before scheduled deliveries. Obstet Gynecol. 2020 May 19 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

565. Sutton D, Fuchs K, D'Alton M, et al. Universal screening for SARS-CoV-2 in women admitted for delivery. N Engl J Med. 2020 Apr 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

566. American College of Obstetricians and Gynecologists. Novel coronavirus 2019 (COVID-19). 2020 [internet publication].Full text external link opens in a new window

567. Favre G, Pomar L, Qi X, et al. Guidelines for pregnant women with suspected SARS-CoV-2 infection. Lancet Infect Dis. 2020 Mar 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

568. Chen D, Yang H, Cao Y, et al. Expert consensus for managing pregnant women and neonates born to mothers with suspected or confirmed novel coronavirus (COVID-19) infection. Int J Gynaecol Obstet. 2020 May;149(2):130-6.Abstract external link opens in a new window

569. Royal College of Obstetricians and Gynaecologists. Coronavirus (COVID-19) infection in pregnancy: information for healthcare professionals. 2020 [internet publication].Full text external link opens in a new window

570. American Academy of Pediatrics. Management of infants born to mothers with suspected or confirmed COVID-19. 2020 [internet publication].Full text external link opens in a new window

571. World Health Organization. Breastfeeding and COVID-19: scientific brief. 2020 [internet publication].Full text external link opens in a new window

572. Centers for Disease Control and Prevention. Evaluation and management considerations for neonates at risk for COVID-19. 2020 [internet publication].Full text external link opens in a new window

573. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): care for breastfeeding women. 2020 [internet publication].Full text external link opens in a new window

574. National Institute for Health and Care Excellence. Acute kidney injury: prevention, detection and management. 2020 [internet publication].Full text external link opens in a new window

575. Hsu CY, Ordoñez JD, Chertow GM, et al. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 2008 Jul;74(1):101-7.Full text external link opens in a new windowAbstract external link opens in a new window

576. National Institute for Health and Care Excellence. COVID-19 rapid guideline: acute kidney injury in hospital. 2020 [internet publication].Full text external link opens in a new window

577. Center for the Study of Traumatic Stress. Taking care of patients during the coronavirus outbreak: a guide for psychiatrists. 2020 [internet publication].Full text external link opens in a new window

578. Shore JH, Schneck CD, Mishkind MC. Telepsychiatry and the coronavirus disease 2019 pandemic-current and future outcomes of the rapid virtualization of psychiatric care. JAMA Psychiatry. 2020 May 11 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

579. Hubley S, Lynch SB, Schneck C, et al. Review of key telepsychiatry outcomes. World J Psychiatry. 2016 Jun 22;6(2):269-82.Full text external link opens in a new windowAbstract external link opens in a new window

580. Fritz Z, Slowther AM, Perkins GD. Resuscitation policy should focus on the patient, not the decision. BMJ. 2017 Feb 28;356:j813.Full text external link opens in a new windowAbstract external link opens in a new window

581. National Institute for Health and Care Excellence. Decision making and mental capacity. 2018 [internet publication].Full text external link opens in a new window

582. Department of Health. Mental Capacity Act 2005 [internet publication].Full text external link opens in a new window

583. Social Care Institute for Excellence. Independent mental capacity advocate (IMCA). 2011 [internet publication].Full text external link opens in a new window

584. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2020 [internet publication].Full text external link opens in a new window

585. Global Initiative for Asthma. Recommendations for inhaled asthma controller medications. 2020 [internet publication].Full text external link opens in a new window

586. British Thoracic Society. Advice for healthcare professionals treating people with asthma (adults) in relation to COVID-19. 2020 [internet publication].Full text external link opens in a new window

587. Global Initiative for Chronic Obstructive Lung Disease. GOLD COVID-19 guidance. 2020 [internet publication].Full text external link opens in a new window

588. National Institute for Health and Care Excellence. COVID-19 rapid guideline: community-based care of patients with chronic obstructive pulmonary disease (COPD). 2020 [internet publication].Full text external link opens in a new window

589. Hasan SS, Capstick T, Zaidi STR, et al. Use of corticosteroids in asthma and COPD patients with or without COVID-19. Respir Med. 2020 Aug-Sep;170:106045.Full text external link opens in a new windowAbstract external link opens in a new window

590. Centre for Evidence-Based Medicine; Hartmann-Boyce J, Hobbs R. Inhaled steroids in asthma during the COVID-19 outbreak. 2020 [internet publication].Full text external link opens in a new window

591. National Institute for Health and Care Excellence. COVID-19 rapid guideline: severe asthma. 2020 [internet publication].Full text external link opens in a new window

592. Primary Care Respiratory Society. PCRS pragmatic guidance: diagnosing and managing asthma attacks and people with COPD presenting in crisis during the UK Covid 19 epidemic. 2020 [internet publication].Full text external link opens in a new window

593. British Thoracic Society; Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma: a national clinical guideline. 2019 [internet publication].Full text external link opens in a new window

594. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. 2020 [internet publication].Full text external link opens in a new window

595. The Renal Association. The Renal Association, UK position statement on COVID-19 and ACE inhibitor/angiotensin receptor blocker use. 2020 [internet publication].Full text external link opens in a new window

596. Clark AL, Kalra PR, Petrie MC, et al. Change in renal function associated with drug treatment in heart failure: national guidance. Heart. 2019 Jun;105(12):904-10.Full text external link opens in a new windowAbstract external link opens in a new window

597. European Society of Endocrinology. COVID-19 and endocrine diseases: a statement from the European Society of Endocrinology. 2020 [internet publication].Full text external link opens in a new window

598. Centre for Evidence-Based Medicine; Hartmann-Boyce J, Morris E, Goyder C, et al. Managing diabetes during the COVID-19 pandemic. 2020 [internet publication].Full text external link opens in a new window

599. American Diabetes Association. COVID-19: If you do get sick, know what to do. 2020 [internet publication].Full text external link opens in a new window

600. Trend Diabetes. Trend releases updated sick-day rules leaflets. 2020 [internet publication].Full text external link opens in a new window

601. Primary Care Diabetes Society. How to advise on sick day rules. 2020 [internet publication].Full text external link opens in a new window

602. NHS England. Diabetes COVID-19 key information: sick day rules. 2020 [internet publication].Full text external link opens in a new window

603. International Diabetes Federation Europe. How to manage diabetes during an illness. 2020 [internet publication].Full text external link opens in a new window

604. Diabetes Australia; Royal Australian College of General Practitioners. Diabetes management during the coronavirus pandemic: be proactive and prepared. 2020 [internet publication].Full text external link opens in a new window

605. National Inpatient Diabetes COVID-19 Response Group. Concise advice on inpatient diabetes during COVID-19: front door guidance. 2020 [internet publication].Full text external link opens in a new window

606. Hartmann-Boyce J, Morris E, Goyder C, et al. Diabetes and COVID-19: risks, management, and learnings from other national disasters. Diabetes Care. 2020 Aug;43(8):1695-703.Full text external link opens in a new windowAbstract external link opens in a new window

607. Peters AL, Buschur EO, Buse JB, et al. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015 Sep;38(9):1687-93.Full text external link opens in a new windowAbstract external link opens in a new window

608. Medicines and Healthcare products Regulatory Agency. SGLT2 inhibitors: updated advice on the risk of diabetic ketoacidosis. 2016 [internet publication].Full text external link opens in a new window

609. Trend Diabetes. Type 2 diabetes: what to do when you’re ill. 2020 [internet publication].Full text external link opens in a new window

610. NHS London Clinical Networks. Sick day rules: how to manage type 2 diabetes if you become unwell with coronavirus and what to do with your medication. 2020 [internet publication].Full text external link opens in a new window

611. Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020 Jun;8(6):546-50.Full text external link opens in a new windowAbstract external link opens in a new window

612. Verbrugge FH, Grieten L, Mullens W. Management of the cardiorenal syndrome in decompensated heart failure. Cardiorenal Med. 2014 Dec;4(3-4):176-88.Full text external link opens in a new windowAbstract external link opens in a new window

613. Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. Nat Rev Neurol. 2010 Dec;6(12):681-94.Abstract external link opens in a new window

614. Eigenbrodt ML, Rose KM, Couper DJ, et al. Orthostatic hypotension as a risk factor for stroke: the atherosclerosis risk in communities (ARIC) study, 1987-1996. Stroke. 2000 Oct;31(10):2307-13.Full text external link opens in a new windowAbstract external link opens in a new window

615. Winstein CJ, Stein J, Arena R, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016 Jun;47(6):e98-169.Full text external link opens in a new windowAbstract external link opens in a new window

616. Pendlebury ST, Klaus SP, Mather M, et al. Routine cognitive screening in older patients admitted to acute medicine: abbreviated mental test score (AMTS) and subjective memory complaint versus Montreal Cognitive Assessment and IQCODE. Age Ageing. 2015 Nov;44(6):1000-5.Full text external link opens in a new windowAbstract external link opens in a new window

617. Hodkinson HM. Evaluation of a mental test score for assessment of mental impairment in the elderly. Age Ageing. 1972 Nov;1(4):233-8.Abstract external link opens in a new window

618. National Institute for Health and Care Excellence. Delirium: prevention, diagnosis and management. 2020 [internet publication].Full text external link opens in a new window

619. National Institute for Health and Clinical Excellence. Dementia: assessment, management and support for people living with dementia and their carers. 2018 [internet publication].Full text external link opens in a new window

620. Scottish Intercollegiate Guidelines Network. Risk reduction and management of delirium: a national clinical guideline. 2019 [internet publication].Full text external link opens in a new window

621. Nova Scotia Health Authority. This is not my Mom. 2012 [internet publication].Full text external link opens in a new window

622. Inouye SK, Schlesinger MJ, Lydon TJ. Delirium: a symptom of how hospital care is failing older persons and a window to improve quality of hospital care. Am J Med. 1999 May;106(5):565-73.Abstract external link opens in a new window

623. Bellelli G, Morandi A, Davis DH, et al. Validation of the 4AT, a new instrument for rapid delirium screening: a study in 234 hospitalised older people. Age Ageing. 2014 Jul;43(4):496-502.Full text external link opens in a new windowAbstract external link opens in a new window

624. MacLullich AM, Shenkin SD, Goodacre S, et al. The 4 'A's test for detecting delirium in acute medical patients: a diagnostic accuracy study. Health Technol Assess. 2019 Aug;23(40):1-194.Full text external link opens in a new windowAbstract external link opens in a new window

625. Public Health England. Coronavirus (COVID-19): admission and care of people in care homes. 2020 [internet publication].Full text external link opens in a new window

626. British Geriatrics Society. Coronavirus: managing delirium in confirmed and suspected cases. 2020 [internet publication].Full text external link opens in a new window

627. Ma H, Huang Y, Cong Z, et al. The efficacy and safety of atypical antipsychotics for the treatment of dementia: a meta-analysis of randomized placebo-controlled trials. J Alzheimers Dis. 2014;42(3):915-37.Abstract external link opens in a new window

628. Huybrechts KF, Gerhard T, Crystal S, et al. Differential risk of death in older residents in nursing homes prescribed specific antipsychotic drugs: population based cohort study. BMJ. 2012 Feb 23;344:e977.Full text external link opens in a new windowAbstract external link opens in a new window

629. Van Leeuwen E, Petrovic M, van Driel ML, et al. Withdrawal versus continuation of long-term antipsychotic drug use for behavioural and psychological symptoms in older people with dementia. Cochrane Database Syst Rev. 2018 Mar 30;(3):CD007726.Full text external link opens in a new windowAbstract external link opens in a new window

630. Centers for Disease Control and Prevention. Clinical questions about COVID-19: questions and answers – patients with asthma. 2020 [internet publication].Full text external link opens in a new window

631. Global Initiative for Asthma. COVID-19: GINA answers to frequently asked questions on asthma management. 2020 [internet publication].Full text external link opens in a new window

632. American Diabetes Association. Diabetes care in the hospital: standards of medical care in diabetes - 2020. Diabetes Care. 2020 Jan;43(suppl 1):S193-202.Full text external link opens in a new windowAbstract external link opens in a new window

633. Joint British Diabetes Societies for inpatient care. The use of variable rate intravenous insulin infusion (VRIII) in medical inpatients. 2014 [internet publication].Full text external link opens in a new window

634. National Inpatient Diabetes COVID-19 Response Group. Concise advice on inpatient diabetes during COVID-19 (COVID:Diabetes): guidance for managing inpatient hyperglycaemia. 2020 [internet publication].Full text external link opens in a new window

635. Rehman A, Setter SM, Vue MH. Drug-induced glucose alterations part 2: drug-induced hyperglycemia. Diabetes Spect. 2011 Nov;24(4):234-8.Full text external link opens in a new window

636. National Inpatient Diabetes COVID-19 Response Group. Concise advice on inpatient diabetes during COVID-19 (COVID:Diabetes): guideline for managing DKA using subcutaneous insulin. 2020 [internet publication].Full text external link opens in a new window

637. NHS Digital. National Diabetes Inpatient Audit (NaDIA) - 2017. 2018 [internet publication].Full text external link opens in a new window

638. Joint British Diabetes Societies for inpatient care. The hospital management of hypoglycaemia in adults with diabetes mellitus. 4th ed. 2020 [internet publication].Full text external link opens in a new window

639. National Institute for Health and Care Excellence. Diabetic foot problems: prevention and management. 2019 [internet publication].Full text external link opens in a new window

640. Rayman G, Vas PR, Baker N, et al. The Ipswich Touch Test: a simple and novel method to identify inpatients with diabetes at risk of foot ulceration. Diabetes Care. 2011 Jul;34(7):1517-8.Full text external link opens in a new windowAbstract external link opens in a new window

641. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001 Sep;16(9):606-13.Full text external link opens in a new windowAbstract external link opens in a new window

642. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020 Jul;7(7):611-27.Full text external link opens in a new windowAbstract external link opens in a new window

643. National Institute for Health Research. High rates of delirium, persistent fatigue and post-traumatic stress disorder were common after severe infection in previous coronavirus outbreaks. 2020 [internet publication].Full text external link opens in a new window

644. Boden JM, Fergusson DM. Alcohol and depression. Addiction. 2011 May;106(5):906-14.Abstract external link opens in a new window

645. Cleare A, Pariante CM, Young AH, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 British Association for Psychopharmacology guidelines. J Psychopharmacol. 2015 May;29(5):459-525.Full text external link opens in a new windowAbstract external link opens in a new window

646. National Institute for Health and Care Excellence. Depression in adults with a chronic physical health problem: recognition and management. 2009 [internet publication].Full text external link opens in a new window

647. Taylor DM, Barnes TRE, Young AH. The Maudsley prescribing guidelines in psychiatry. 13th edition. Chichester: Wiley-Blackwell; 2018.

648. Flowers L. Nicotine replacement therapy. Am J Psychiatry Resid J. 2016 Jun;11(6):4-7.Full text external link opens in a new window

649. Desai HD, Seabolt J, Jann MW. Smoking in patients receiving psychotropic medications: a pharmacokinetic perspective. CNS Drugs. 2001;15(6):469-94.Abstract external link opens in a new window

650. Oliveira P, Ribeiro J, Donato H, et al. Smoking and antidepressants pharmacokinetics: a systematic review. Ann Gen Psychiatry. 2017 Mar 6;16:17.Full text external link opens in a new windowAbstract external link opens in a new window

651. National Centre for Smoking Cessation and Training. Smoking cessation and mental health: a briefing for front-line staff. 2014 [internet publication].Full text external link opens in a new window

652. Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med. 2005 Mar 17;352(11):1112-20.Full text external link opens in a new windowAbstract external link opens in a new window

653. National Institute for Health and Care Excellence. Liaison psychiatry. In: Emergency acute medical care in over 16s: service delivery and organisation. 2018 [internet publication].Full text external link opens in a new window

654. National Confidential Enquiry into Patient Outcome and Death. Treat as one: bridging the gap between mental and physical healthcare in general hospitals. 2017 [internet publication].Full text external link opens in a new window

655. DiMatteo MR, Lepper HS, Croghan TW. Depression is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence. Arch Intern Med. 2000 Jul 24;160(14):2101-7.Full text external link opens in a new windowAbstract external link opens in a new window

656. Prina AM, Cosco TD, Dening T, et al. The association between depressive symptoms in the community, non-psychiatric hospital admission and hospital outcomes: a systematic review. J Psychosom Res. 2015 Jan;78(1):25-33.Full text external link opens in a new windowAbstract external link opens in a new window

657. Clarke DM, Currie KC. Depression, anxiety and their relationship with chronic diseases: a review of the epidemiology, risk and treatment evidence. Med J Aust. 2009 Apr 6;190(s7):S54-60.Abstract external link opens in a new window

658. World Health Organization. Excess mortality in persons with severe mental disorders. 2016 [internet publication].Full text external link opens in a new window

659. National Institute for Health and Care Excellence. Smoking: acute, maternity and mental health services. 2020 [internet publication].Full text external link opens in a new window

660. O'Driscoll BR, Howard LS, Earis J, et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017 Jun;72(suppl 1):ii1-90.Full text external link opens in a new windowAbstract external link opens in a new window

661. British Thoracic Society. BTS guidance: respiratory support of patients on medical wards. 2020 [internet publication].Full text external link opens in a new window

662. Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018 Apr 28;391(10131):1693-705.Abstract external link opens in a new window

663. Siemieniuk RAC, Chu DK, Kim LH, et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ. 2018 Oct 24;363:k4169.Abstract external link opens in a new window

664. National Institute for Health and Care Excellence. Intravenous fluid therapy in adults in hospital. 2017 [internet publication].Full text external link opens in a new window

665. Chowdhury TA, Cheston H, Claydon A. Managing adults with diabetes in hospital during an acute illness. BMJ. 2017 Jun 22;357:j2551.Abstract external link opens in a new window

666. Karslioglu French E, Donihi AC, Korytkowski MT. Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome: review of acute decompensated diabetes in adult patients. BMJ. 2019 May 29;365:l1114.Full text external link opens in a new windowAbstract external link opens in a new window

667. British National Formulary. London: BMJ Group, RCPCH Publications Ltd, and the Royal Pharmaceutical Society of Great Britain. 2020.Full text external link opens in a new window

668. National Inpatient Diabetes COVID-19 Response Group. Concise advice on inpatient diabetes during COVID-19 (COVID:Diabetes): dexamethasone therapy in covid-19 patients – implications and guidance for the management of blood glucose in people with and without diabetes. 2020 [internet publication].Full text external link opens in a new window

669. Joint British Diabetes Societies for inpatient care. Management of hyperglycaemia and steroid (glucocorticosteroid) therapy. 2014 [internet publication].Full text external link opens in a new window

670. Judd LL, Schettler PJ, Brown ES, et al. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects. Am J Psychiatry. 2014 Oct;171(10):1045-51.Full text external link opens in a new windowAbstract external link opens in a new window

671. Kenna HA, Poon AW, de los Angeles CP, et al. Psychiatric complications of treatment with corticosteroids: review with case report. Psychiatry Clin Neurosci. 2011 Oct;65(6):549-60.Full text external link opens in a new windowAbstract external link opens in a new window

672. Warrington TP, Bostwick JM. Psychiatric adverse effects of corticosteroids. Mayo Clin Proc. 2006 Oct;81(10):1361-7.Full text external link opens in a new windowAbstract external link opens in a new window

673. Fardet L, Nazareth I, Whitaker HJ, et al. Severe neuropsychiatric outcomes following discontinuation of long-term glucocorticoid therapy: a cohort study. J Clin Psychiatry. 2013 Apr;74(4):e281-6.Abstract external link opens in a new window

674. Greenhalgh T, Knight M, A’Court C, et al. Management of post-acute covid-19 in primary care. BMJ. 2020 Aug 11;370:m3026.Full text external link opens in a new windowAbstract external link opens in a new window

675. British Geriatrics Society. COVID-19: rehabilitation of older people. 2020 [internet publication].Full text external link opens in a new window

676. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016 Jul 14;37(27):2129-200.Full text external link opens in a new windowAbstract external link opens in a new window

677. Freeman R, Wieling W, Axelrod FB, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res. 2011 Apr;21(2):69-72.Abstract external link opens in a new window

678. Kalil AC. Treating COVID-19: off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA Mar 24 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

679. Marzolini C, Battegay M, Sendi P, et al. Prescribing in COVID-19 patients: should we take into account inflammation? Br J Clin Pharmacol. 2020 Aug 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

680. US Food and Drug Administration. FDA issues emergency use authorization for convalescent plasma as potential promising COVID–19 treatment, another achievement in administration’s fight against pandemic. 2020 [internet publication].Full text external link opens in a new window

681. Joyner MJ, Senefeld JW, Klassen SA, et al; medRxiv. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: initial three-month experience. 2020 [internet publication].Full text external link opens in a new window

682. Sarkar S, Soni KD, Khanna P. Convalescent plasma a clutch at straws in COVID-19 management! A systematic review and meta-analysis. J Med Virol. 2020 Aug 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

683. Piechotta V, Chai KL, Valk SJ, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev. 2020 Jul 10;7:CD013600.Full text external link opens in a new windowAbstract external link opens in a new window

684. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Mar;30(3):269-71.Full text external link opens in a new windowAbstract external link opens in a new window

685. Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020 Jun;57:279-83.Full text external link opens in a new windowAbstract external link opens in a new window

686. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020 Mar 20:105949.Full text external link opens in a new windowAbstract external link opens in a new window

687. Chen Z, Hu J, Zhang Z, et al; medRxiv. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. 2020 [internet publication].Full text external link opens in a new window

688. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020 May 14;369:m1849.Full text external link opens in a new windowAbstract external link opens in a new window

689. Hernandez AV, Roman YM, Pasupuleti V, et al. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: a living systematic review. Ann Intern Med. 2020 May 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

690. Hernandez AV, Roman YM, Pasupuleti V, et al. Update alert 2: hydroxychloroquine or chloroquine for the treatment or prophylaxis of COVID-19. Ann Intern Med. 2020 Aug 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

691. Pathak DSK, Salunke DAA, Thivari DP, et al. No benefit of hydroxychloroquine in COVID-19: results of systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr. 2020 Sep 1;14(6):1673-80.Full text external link opens in a new windowAbstract external link opens in a new window

692. Torjesen I. Covid-19: hydroxychloroquine does not benefit hospitalised patients, UK trial finds. BMJ. 2020 Jun 8;369:m2263.Full text external link opens in a new windowAbstract external link opens in a new window

693. Roden DM, Harrington RA, Poppas A, et al. Considerations for drug interactions on QTc in exploratory COVID-19 (coronavirus disease 2019) treatment. Circulation. 2020 Jun 16;141(24):e906-7.Full text external link opens in a new windowAbstract external link opens in a new window

694. Kamp TJ, Hamdan MH, January CT. Chloroquine or hydroxychloroquine for COVID-19: is cardiotoxicity a concern? J Am Heart Assoc. 2020 May 28:e016887.Full text external link opens in a new windowAbstract external link opens in a new window

695. Bessière F, Roccia H, Delinière A, et al. Assessment of QT intervals in a case series of patients with coronavirus disease 2019 (COVID-19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intensive care unit. JAMA Cardiol. 2020 May 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

696. Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 May 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

697. Nguyen LS, Dolladille C, Drici MD, et al. Cardiovascular toxicities associated with hydroxychloroquine and azithromycin: an analysis of the World Health Organization pharmacovigilance database. Circulation. 2020 May 22 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

698. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020 Mar 3;323(15):1488-94.Full text external link opens in a new windowAbstract external link opens in a new window

699. Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020 May 7;382(19):1787-99.Full text external link opens in a new windowAbstract external link opens in a new window

700. RECOVERY Trial. No clinical benefit from use of lopinavir-ritonavir in hospitalised COVID-19 patients studied in RECOVERY. 2020 [internet publication].Full text external link opens in a new window

701. World Health Organization. “Solidarity” clinical trial for COVID-19 treatments. 2020 [internet publication].Full text external link opens in a new window

702. Beyls C, Martin N, Hermida A, et al. Lopinavir-ritonavir treatment for COVID-19 infection in intensive care unit: risk of bradycardia. Circ Arrhythm Electrophysiol. 2020 Aug;13(8):e008798.Full text external link opens in a new windowAbstract external link opens in a new window

703. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 2020 Mar 25;21(7).Full text external link opens in a new windowAbstract external link opens in a new window

704. Xie Y, Cao S, Li Q, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020 Apr 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

705. Zhang J, Yang Y, Yang N, et al. Effectiveness of intravenous immunoglobulin for children with severe COVID-19: a rapid review. Ann Transl Med. 2020 May;8(10):625.Full text external link opens in a new windowAbstract external link opens in a new window

706. Marovich M, Mascola JR, Cohen MS. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA. 2020 Jun 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

707. Eli Lilly and Company. Lilly announces start of a phase 1 study for its second potential COVID-19 antibody treatment. 2020 [internet publication].Full text external link opens in a new window

708. Eli Lilly and Company. Lilly begins world's first study of a potential COVID-19 antibody treatment in humans. 2020 [internet publication].Full text external link opens in a new window

709. Regeneron. Regeneron announces important advances in novel COVID-19 antibody program. 2020 [internet publication].Full text external link opens in a new window

710. Mahase E. Covid-19: RECOVERY trial will evaluate "antiviral antibody cocktail". BMJ. 2020 Sep 15;370:m3584.Full text external link opens in a new windowAbstract external link opens in a new window

711. Aziz M, Haghbin H, Sitta EA, et al. Efficacy of tocilizumab in COVID-19: a systematic review and meta-analysis. J Med Virol. 2020 Sep 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

712. Genentech. Genentech’s phase III EMPACTA study showed Actemra reduced the likelihood of needing mechanical ventilation in hospitalized patients with COVID-19 associated pneumonia. 2020 [internet publication].Full text external link opens in a new window

713. Furlow B. COVACTA trial raises questions about tocilizumab's benefit in COVID-19. Lancet Rheumatol. 2020 Sep 9 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

714. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020 Jun;2(6):e325-31.Full text external link opens in a new windowAbstract external link opens in a new window

715. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020 Jul;2(7):e393-400.Full text external link opens in a new windowAbstract external link opens in a new window

716. Navarro-Millán I, Sattui SE, Lakhanpal A, et al. Use of anakinra to prevent mechanical ventilation in severe COVID-19: a case series. Arthritis Rheumatol. 2020 Jun 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

717. National Institute for Health and Care Excellence. COVID 19 rapid evidence summary: anakinra for COVID-19 associated secondary haemophagocytic lymphohistiocytosis. 2020 [internet publication].Full text external link opens in a new window

718. De Luca G, Cavalli G, Campochiaro C, et al. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. Lancet Rheumatol. 2020 Aug;2(8):e465-73.Full text external link opens in a new windowAbstract external link opens in a new window

719. Temesgen Z, Assi M, Shweta FNU, et al. GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia: a case-control study. Mayo Clin Proc. 2020 Aug [Epub ahead of print].Full text external link opens in a new window

720. Temesgen Z, Assi M, Vergidis P, et al. First clinical use of lenzilumab to neutralize GM-CSF in patients with severe COVID-19 pneumonia. medRxiv. 2020 Jun 14 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

721. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020 Jun;53(3):368-70.Full text external link opens in a new windowAbstract external link opens in a new window

722. Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020 Jul;146(1):137-46.Full text external link opens in a new windowAbstract external link opens in a new window

723. Titanji BK, Farley MM, Mehta A, et al. Use of baricitinib in patients with moderate and severe COVID-19. Clin Infect Dis. 2020 Jun 29 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

724. Eli Lilly and Company. Baricitinib in combination with remdesivir reduces time to recovery in hospitalized patients with COVID-19 in NIAID-sponsored ACTT-2 trial. 2020 [internet publication].Full text external link opens in a new window

725. ClinicalTrials.gov. Mesenchymal stem cell treatment for pneumonia patients infected with 2019 novel coronavirus. 2020 [internet publication].Full text external link opens in a new window

726. Cheng LL, Guan WJ, Duan CY, et al. Effect of recombinant human granulocyte colony-stimulating factor for patients with coronavirus disease 2019 (COVID-19) and lymphopenia: a randomized clinical trial. JAMA Intern Med. 2020 Sep 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

727. Centre for Evidence-Based Medicine; Soliman R, Brassey J, Plüddemann A, et al. Does BCG vaccination protect against acute respiratory infections and COVID-19? A rapid review of current evidence. 2020 [internet publication].Full text external link opens in a new window

728. World Health Organization. Bacille Calmette-Guérin (BCG) vaccination and COVID-19: scientific brief. 2020 [internet publication].Full text external link opens in a new window

729. Department of Health and Social Care. COVID-19 treatments could be fast-tracked through new national clinical trial initiative. 2020 [internet publication].Full text external link opens in a new window

730. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 2020 Mar 4 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

731. ClinicalTrials.gov. Losartan for patients with COVID-19 requiring hospitalization. 2020 [internet publication].Full text external link opens in a new window

732. ClinicalTrials.gov. Losartan for patients with COVID-19 not requiring hospitalization. 2020 [internet publication].Full text external link opens in a new window

733. Chinese Clinical Trial Registry. A randomized, open-label, blank-controlled trial for the efficacy and safety of lopinavir-ritonavir and interferon-alpha 2b in hospitalization patients with 2019-nCoV pneumonia (novel coronavirus pneumonia, NCP). 2020 [internet publication].Full text external link opens in a new window

734. Chinese Clinical Trial Registry. Clinical study for safety and efficacy of favipiravir in the treatment of novel coronavirus pneumonia (COVID-19). 2020 [internet publication].Full text external link opens in a new window

735. Chinese Clinical Trial Registry. Clinical study of arbidol hydrochloride tablets in the treatment of novel coronavirus pneumonia (COVID-19). 2020 [internet publication].Full text external link opens in a new window

736. Chinese Clinical Trial Registry. Randomized, open-label, controlled trial for evaluating of the efficacy and safety of baloxavir marboxil, favipiravir, and lopinavir-ritonavir in the treatment of novel coronavirus pneumonia (COVID-19) patients. 2020 [internet publication].Full text external link opens in a new window

737. Zeng YM, Xu XL, He XQ, et al. Comparative effectiveness and safety of ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha and ribavirin plus lopinavir/ritonavir plus interferon-alpha in patients with mild to moderate novel coronavirus pneumonia. Chin Med J (Engl). 2020 May 5;133(9):1132-4.Full text external link opens in a new windowAbstract external link opens in a new window

738. Li H, Wang YM, Xu JY, et al. Potential antiviral therapeutics for 2019 novel coronavirus [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi. 2020 Mar 12;43(3):170-2.Abstract external link opens in a new window

739. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. J Infect. 2020 Jul;81(1):e1-5.Full text external link opens in a new windowAbstract external link opens in a new window

740. ClinicalTrials.gov. Efficacy and safety of darunavir and cobicistat for treatment of pneumonia caused by 2019-nCoV (DACO-nCoV). 2020 [internet publication].Full text external link opens in a new window

741. Synairgen. COVID-19. 2020 [internet publication].Full text external link opens in a new window

742. CytoDyn Inc. Leronlimab used in seven patients with severe COVID-19 demonstrated promise with two intubated patients in ICU, removed from ICU and extubated with reduced pulmonary inflammation. 2020 [internet publication].Full text external link opens in a new window

743. Huang D, Yu H, Wang T, et al. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Med Virol. 2020 Jul 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

744. Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020 May 30;395(10238):1695-704.Full text external link opens in a new windowAbstract external link opens in a new window

745. National Institutes of Health. NIH clinical trial testing remdesivir plus interferon beta-1a for COVID-19 treatment begins. 2020 [internet publication].Full text external link opens in a new window

746. University of Oxford. PRINCIPLE trial. 2020 [internet publication].Full text external link opens in a new window

747. Caly L, Druce JD, Catton MG, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020 Jun;178:104787.Full text external link opens in a new windowAbstract external link opens in a new window

748. Momekov G, Momekova D; medRxiv. Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view: antiviral levels are not likely attainable with known dosing regimens. 2020 [internet publication].Full text external link opens in a new window

749. Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020 Apr 21:100190.Full text external link opens in a new windowAbstract external link opens in a new window

750. ClinicalTrials.gov. Vitamin C infusion for the treatment of severe 2019-nCoV infected pneumonia. 2020 [internet publication].Full text external link opens in a new window

751. Baladia E, Pizarro AB, Ortiz-Muñoz L, et al. Vitamin C for COVID-19: a living systematic review. Medwave. 2020 Jul 28;20(6):e7978.Full text external link opens in a new windowAbstract external link opens in a new window

752. Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020 Apr 2;12(4).Full text external link opens in a new windowAbstract external link opens in a new window

753. McCartney DM, Byrne DG. Optimisation of vitamin D status for enhanced immuno-protection against Covid-19. Ir Med J. 2020 Apr 3;113(4):58.Full text external link opens in a new windowAbstract external link opens in a new window

754. Jakovac H. COVID-19 and vitamin D: is there a link and an opportunity for intervention? Am J Physiol Endocrinol Metab. 2020 May 1;318(5):E589.Full text external link opens in a new windowAbstract external link opens in a new window

755. ClinicalTrials.gov. Vitamin D on prevention and treatment of COVID-19 (COVITD-19). 2020 [internet publication].Full text external link opens in a new window

756. ClinicalTrials.gov. COVID-19 and vitamin D supplementation: a multicenter randomized controlled trial of high dose versus standard dose vitamin D3 in high-risk COVID-19 patients (CoVitTrial). 2020 [internet publication].Full text external link opens in a new window

757. Centre for Evidence-Based Medicine; Lee J, van Hecke O, Roberts N. Vitamin D: a rapid review of the evidence for treatment or prevention in COVID-19. 2020 [internet publication].Full text external link opens in a new window

758. Castillo ME, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020 Aug 29;105751.Full text external link opens in a new windowAbstract external link opens in a new window

759. National Institute for Health and Care Excellence. COVID-19 rapid evidence summary: vitamin D for COVID-19. 2020 [internet publication].Full text external link opens in a new window

760. Mak JWY, Chan FKL, Ng SC. Probiotics and COVID-19: authors' reply. Lancet Gastroenterol Hepatol. 2020 Aug;5(8):722-3.Full text external link opens in a new windowAbstract external link opens in a new window

761. Yang Y, Islam MS, Wang J, et al. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci. 2020 Mar 15;16(10):1708-17.Full text external link opens in a new windowAbstract external link opens in a new window

762. Harch PG. Hyperbaric oxygen treatment of novel coronavirus (COVID-19) respiratory failure. Med Gas Res. Apr-Jun 2020;10(2):61-2.Abstract external link opens in a new window

763. Thibodeaux K, Speyrer M, Raza A, et al. Hyperbaric oxygen therapy in preventing mechanical ventilation in COVID-19 patients: a retrospective case series. J Wound Care. 2020 May 1;29(sup5a):S4-8.Abstract external link opens in a new window

764. ClinicalTrials.gov. Hyperbaric oxygen for COVID-19 patients. 2020 [internet publication].Full text external link opens in a new window

765. ClinicalTrials.gov. Safety and efficacy of hyperbaric oxygen for ARDS in patients with COVID-19 (COVID-19-HBO). 2020 [internet publication].Full text external link opens in a new window

766. Martel J, Ko YF, Young JD, et al. Could nasal nitric oxide help to mitigate the severity of COVID-19? Microbes Infect. 2020 May 6 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

767. ClinicalTrials.gov. Intravenous aviptadil for critical COVID-19 with respiratory failure (COVID-AIV). 2020 [internet publication].Full text external link opens in a new window

768. ClinicalTrials.gov. Inhaled aviptadil for the treatment of non-acute lung injury in COVID-19 (AVINALI). 2020 [internet publication].Full text external link opens in a new window

769. NeuroRx. NeuroRx submits request for emergency use authorization for RLF-100™ (aviptadil) in the treatment of patients with critical COVID-19 and respiratory failure who have exhausted approved therapy. 2020 [internet publication].Full text external link opens in a new window

770. van de Veerdonk FL, Kouijzer IJE, de Nooijer AH, et al. Outcomes associated with use of a kinin B2 receptor antagonist among patients with COVID-19. JAMA Netw Open. 2020 Aug 3;3(8):e2017708.Full text external link opens in a new windowAbstract external link opens in a new window

771. Vanda Pharmaceuticals Inc. Vanda Pharmaceuticals' interim analysis from ODYSSEY study shows tradipitant may accelerate clinical improvement in patients with COVID-19 pneumonia. 2020 [internet publication].Full text external link opens in a new window

772. ClinicalTrials.gov. ODYSSEY: a study to investigate the efficacy of tradipitant in treating severe or critical COVID-19 infection. 2020 [internet publication].Full text external link opens in a new window

773. World Health Organization. Coronavirus disease (COVID-19) weekly epidemiological updates. 2020 [internet publication].Full text external link opens in a new window

774. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020 Jun;20(6):669-77.Full text external link opens in a new windowAbstract external link opens in a new window

775. Williamson EJ, Walker AJ, Bhaskaran K, et al. OpenSAFELY: factors associated with COVID-19 death in 17 million patients. Nature. 2020 Jul 8 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

776. Centre for Evidence-Based Medicine; Oke J, Heneghan C. Global COVID-19 case fatality rates. 2020 [internet publication].Full text external link opens in a new window

777. Mahase E. Covid-19: the problems with case counting. BMJ. 2020 Sep 3;370:m3374.Full text external link opens in a new windowAbstract external link opens in a new window

778. Centre for Evidence-Based Medicine; Oke J, Heneghan C. Reconciling COVID-19 death data in the UK. 2020 [internet publication].Full text external link opens in a new window

779. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020 Mar 23 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

780. Mahase E. Coronavirus covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ. 2020 Feb 18;368:m641.Full text external link opens in a new windowAbstract external link opens in a new window

781. Rajgor DD, Lee MH, Archuleta S, et al. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020 Jul;20(7):776-7.Full text external link opens in a new windowAbstract external link opens in a new window

782. Department of Health and Social Care. UK Biobank COVID-19 antibody study: round 1 results. 2020 [internet publication].Full text external link opens in a new window

783. Department of Health & Social Care. REACT-2: real-time assessment of community transmission – prevalence of coronavirus (COVID-19) antibodies in June 2020. 2020 [internet publication].Full text external link opens in a new window

784. Centers for Disease Control and Prevention. Commercial laboratory seroprevalence survey data. 2020 [internet publication].Full text external link opens in a new window

785. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020 Jul 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

786. Perez-Saez J, Lauer SA, Kaiser L, et al. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 2020 Jul 14 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

787. Shakiba M, Hashemi Nazari SS, Mehrabian F, et al; medRxiv. Seroprevalence of COVID-19 virus infection in Guilan province, Iran. 2020 [internet publication].Full text external link opens in a new window

788. Erikstrup C, Hother CE, Pedersen OB, et al; medRxiv. Estimation of SARS-CoV-2 infection fatality rate by real-time antibody screening of blood donors. 2020 [internet publication].Full text external link opens in a new window

789. Los Angeles County Department of Public Health. USC-LA county study: early results of antibody testing suggest number of COVID-19 infections far exceeds number of confirmed cases in Los Angeles County. 2020 [internet publication].Full text external link opens in a new window

790. Sood N, Simon P, Ebner P, et al. Seroprevalence of SARS-CoV-2-specific antibodies among adults in Los Angeles County, California, on April 10-11, 2020. JAMA. 2020 May 18;323(23):2425-7.Full text external link opens in a new windowAbstract external link opens in a new window

791. Bendavid E, Mulaney B, Sood N; medRxiv. COVID-19 antibody seroprevalence in Santa Clara County, California. 2020 [internet publication].Full text external link opens in a new window

792. Korth J, Wilde W, Dolff S, et al. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. J Clin Virol. 2020 May 13;104437.Full text external link opens in a new windowAbstract external link opens in a new window

793. Gudbjartsson DF, Norddahl GL, Melsted P, et al. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med. 2020 Sep 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

794. Xu X, Sun J, Nie S, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat Med. 2020 Jun 5 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

795. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: a nationwide analysis. Eur Respir J. 2020 May 14;55(5):2000547.Full text external link opens in a new windowAbstract external link opens in a new window

796. Sorbello M, El-Boghdadly K, Di Giacinto I, et al. The Italian COVID-19 outbreak: experiences and recommendations from clinical practice. Anaesthesia. 2020 Jun;75(6):724-32.Full text external link opens in a new windowAbstract external link opens in a new window

797. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 6;323(16):1574-81.Full text external link opens in a new windowAbstract external link opens in a new window

798. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 Mar 19;323(16):1612-4.Full text external link opens in a new windowAbstract external link opens in a new window

799. McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020 May 21;382(21):2005-11.Full text external link opens in a new windowAbstract external link opens in a new window

800. Mehta V, Goel S, Kabarriti R, et al. Case fatality rate of cancer patients with COVID-19 in a New York hospital system. Cancer Discov. 2020 Jul;10(7):935-41.Full text external link opens in a new windowAbstract external link opens in a new window

801. Bixler D, Miller AD, Mattison CP, et al. SARS-CoV-2–associated deaths among persons aged <21 years: United States, February 12–July 31, 2020. MMWR Morb Mortal Wkly Rep. 2020 Sep 18;69(37):1324-9.Full text external link opens in a new windowAbstract external link opens in a new window

802. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May;46(5):846-8.Full text external link opens in a new windowAbstract external link opens in a new window

803. Hasan SS, Capstick T, Ahmed R, et al. Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis. Expert Rev Respir Med. 2020 Jul 31 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

804. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020 Apr 22;323(20):2052-9.Full text external link opens in a new windowAbstract external link opens in a new window

805. Docherty AB, Harrison EM, Green CA, et al; medRxiv. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. 2020 [internet publication].Full text external link opens in a new window

806. Auld SC, Caridi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit Care Med. 2020 May 26 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

807. Yang F, Shi S, Zhu J, et al. Analysis of 92 deceased patients with COVID-19. J Med Virol. 2020 Apr 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

808. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 May;8(5):475-81.Full text external link opens in a new windowAbstract external link opens in a new window

809. Figliozzi S, Masci PG, Ahmadi N, et al. Predictors of adverse prognosis in Covid-19: a systematic review and meta-analysis. Eur J Clin Invest. 2020 Jul 29:e13362.Full text external link opens in a new windowAbstract external link opens in a new window

810. Parohan M, Yaghoubi S, Seraji A, et al. Risk factors for mortality in patients with coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020 Jun 8:1-9.Full text external link opens in a new windowAbstract external link opens in a new window

811. Zou X, Li S, Fang M, et al. Acute physiology and chronic health evaluation II score as a predictor of hospital mortality in patients of coronavirus disease 2019. Crit Care Med. 2020 May 1;48(8):e657-65.Full text external link opens in a new windowAbstract external link opens in a new window

812. Fan G, Tu C, Zhou F, et al. Comparison of severity scores for COVID-19 patients with pneumonia: a retrospective study. Eur Respir J. 2020 Jul 16 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

813. Ji D, Zhang D, Xu J, et al. Prediction for progression risk in patients with COVID-19 pneumonia: the CALL score. Clin Infect Dis. 2020 Apr 9 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

814. Liang W, Liang H, Ou L, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020 May 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

815. Knight SR, Ho A, Pius R, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: development and validation of the 4C mortality score. BMJ. 2020 Sep 9;370:m3339.Full text external link opens in a new windowAbstract external link opens in a new window

816. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020 Mar 16 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

817. Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: a case report. Int J Infect Dis. 2020 Mar 5;93:297-9.Full text external link opens in a new windowAbstract external link opens in a new window

818. Xing Y, Mo P, Xiao Y, et al. Post-discharge surveillance and positive virus detection in two medical staff recovered from coronavirus disease 2019 (COVID-19), China, January to February 2020. Euro Surveill. 2020 Mar;25(10).Full text external link opens in a new windowAbstract external link opens in a new window

819. Mattiuzzi C, Henry BM, Sanchis-Gomar F, et al. SARS-CoV-2 recurrent RNA positivity after recovering from coronavirus disease 2019 (COVID-19): a meta-analysis. Acta Biomed. 2020 Sep 7;91(3):e2020014.Full text external link opens in a new windowAbstract external link opens in a new window

820. Arafkas M, Khosrawipour T, Kocbach P, et al. Current meta-analysis does not support the possibility of COVID-19 reinfections. J Med Virol. 2020 Sep 8 [Epub ahead of print].Abstract external link opens in a new window

821. Parry J. Covid-19: Hong Kong scientists report first confirmed case of reinfection. BMJ. 2020 Aug 26;370:m3340.Full text external link opens in a new windowAbstract external link opens in a new window

822. Chandrashekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020 May 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

823. Kirkcaldy RD, King BA, Brooks JT. COVID-19 and postinfection immunity: limited evidence, many remaining questions. JAMA. 2020 May 11 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

824. Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020 Jun 16;52(6):971-7.Full text external link opens in a new windowAbstract external link opens in a new window

825. Wu F, Liu M, Wang A, et al. Evaluating the association of clinical characteristics with neutralizing antibody levels in patients who have recovered from mild COVID-19 in Shanghai, China. JAMA Intern Med. 2020 Aug 18 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

826. Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020 Jun 18 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

827. Centre for Evidence-Based Medicine; Kernohan A, Calderon M. What are the risk factors and effectiveness of prophylaxis for venous thromboembolism in COVID-19 patients? 2020 [internet publication].Full text external link opens in a new window

828. Lu YF, Pan LY, Zhang WW, et al. A meta-analysis of the incidence of venous thromboembolic events and impact of anticoagulation on mortality in patients with COVID-19. Int J Infect Dis. 2020 Aug 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

829. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020 Jul;18(7):1747-51.Full text external link opens in a new windowAbstract external link opens in a new window

830. Bilaloglu S, Aphinyanaphongs Y, Jones S, et al. Thrombosis in hospitalized patients With COVID-19 in a New York City health system. JAMA. 2020 Jul 20 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

831. Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020 May 11;7(6):e438-40.Full text external link opens in a new windowAbstract external link opens in a new window

832. Demelo-Rodríguez P, Cervilla-Muñoz E, Ordieres-Ortega L, et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res. 2020 May 13;192:23-6.Full text external link opens in a new windowAbstract external link opens in a new window

833. Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020 May 6 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

834. Wang T, Chen R, Liu C, et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020 May;7(5):e362-3.Full text external link opens in a new windowAbstract external link opens in a new window

835. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020 Apr 23;382(17):e38.Full text external link opens in a new windowAbstract external link opens in a new window

836. Bowles L, Platton S, Yartey N, et al. Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. N Engl J Med. 2020 Jul 16;383(3):288-90.Full text external link opens in a new windowAbstract external link opens in a new window

837. Galeano-Valle F, Oblitas CM, Ferreiro-Mazón MM, et al. Antiphospholipid antibodies are not elevated in patients with severe COVID-19 pneumonia and venous thromboembolism. Thromb Res. 2020 Aug;192:113-5.Full text external link opens in a new windowAbstract external link opens in a new window

838. Xiao M, Zhang Y, Zhang S, et al. Brief report: anti-phospholipid antibodies in critically ill patients with coronavirus disease 2019 (COVID-19). Arthritis Rheumatol. 2020 Jun 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

839. Reyes Gil M, Barouqa M, Szymanski J, et al. Assessment of lupus anticoagulant positivity in patients with coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020 Aug 3;3(8):e2017539.Full text external link opens in a new windowAbstract external link opens in a new window

840. van Nieuwkoop C. COVID-19 associated pulmonary thrombosis. Thromb Res. 2020 Jul;191:151.Full text external link opens in a new windowAbstract external link opens in a new window

841. McGonagle D, O'Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020 Jul;2(7):e437-45.Full text external link opens in a new windowAbstract external link opens in a new window

842. Belen-Apak FB, Sarıalioğlu F. Pulmonary intravascular coagulation in COVID-19: possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J Thromb Thrombolysis. 2020 Aug;50(2):278-80.Full text external link opens in a new windowAbstract external link opens in a new window

843. Perini P, Nabulsi B, Massoni CB, et al. Acute limb ischaemia in two young, non-atherosclerotic patients with COVID-19. Lancet. 2020 May 16;395(10236):1546.Full text external link opens in a new windowAbstract external link opens in a new window

844. Griffin DO, Jensen A, Khan M, et al. Arterial thromboembolic complications in COVID-19 in low-risk patients despite prophylaxis. Br J Haematol. 2020 Jul;190(1):e11-3.Full text external link opens in a new windowAbstract external link opens in a new window

845. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020 Apr 23;191:9-14.Full text external link opens in a new windowAbstract external link opens in a new window

846. Vulliamy P, Jacob S, Davenport RA. Acute aorto-iliac and mesenteric arterial thromboses as presenting features of COVID-19. Br J Haematol. 2020 Jun;189(6):1053-4.Full text external link opens in a new windowAbstract external link opens in a new window

847. Hemasian H, Ansari B. First case of Covid-19 presented with cerebral venous thrombosis: a rare and dreaded case. Rev Neurol (Paris). 2020 Jun;176(6):521-3.Full text external link opens in a new windowAbstract external link opens in a new window

848. Madjid M, Safavi-Naeini P, Solomon SD, et al. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020 Mar 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

849. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020 May 14;41(19):1861-2.Full text external link opens in a new windowAbstract external link opens in a new window

850. Liu PP, Blet A, Smyth D, et al. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020 Jul 7;142(1):68-78.Full text external link opens in a new windowAbstract external link opens in a new window

851. Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. 2020 May 19;141(20):1648-55.Full text external link opens in a new windowAbstract external link opens in a new window

852. Hendren NS, Drazner MH, Bozkurt B, et al. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020 Jun 9;141(23):1903-14.Full text external link opens in a new windowAbstract external link opens in a new window

853. Zou F, Qian Z, Wang Y, et al. Cardiac injury and COVID-19: a systematic review and meta-analysis. CJC Open. 2020 Jun 23 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

854. Sabatino J, De Rosa S, Di Salvo G, et al. Impact of cardiovascular risk profile on COVID-19 outcome: a meta-analysis. PLoS One. 2020 Aug 14;15(8):e0237131.Full text external link opens in a new windowAbstract external link opens in a new window

855. Creel-Bulos C, Hockstein M, Amin N, et al. Acute cor pulmonale in critically ill patients with Covid-19. N Engl J Med. 2020 May 21;382(21):e70.Full text external link opens in a new windowAbstract external link opens in a new window

856. Zeng JH, Liu YX, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020 Apr 10;1-5.Full text external link opens in a new windowAbstract external link opens in a new window

857. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 Mar 27;5(7):1-6.Full text external link opens in a new windowAbstract external link opens in a new window

858. Hua A, O'Gallagher K, Sado D, et al. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020 Jun 7;41(22):2130.Full text external link opens in a new windowAbstract external link opens in a new window

859. Meyer P, Degrauwe S, Delden CV, et al. Typical takotsubo syndrome triggered by SARS-CoV-2 infection. Eur Heart J. 2020 May 14;41(19):1860.Full text external link opens in a new windowAbstract external link opens in a new window

860. Li X, Pan X, Li Y, et al. Cardiac injury associated with severe disease or ICU admission and death in hospitalized patients with COVID-19: a meta-analysis and systematic review. Crit Care. 2020 Jul 28;24(1):468.Full text external link opens in a new windowAbstract external link opens in a new window

861. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020 Mar 25;5(7):802-10.Full text external link opens in a new windowAbstract external link opens in a new window

862. He XW, Lai JS, Cheng J, et al. Impact of complicated myocardial injury on the clinical outcome of severe or critically ill COVID-19 patients [in Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020 Mar 15;48(0):E011.Abstract external link opens in a new window

863. Santoso A, Pranata R, Wibowo A, et al. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: a meta-analysis. Am J Emerg Med. 2020 Apr 19 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

864. Inciardi RM, Adamo M, Lupi L, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020 May 14;41(19):1821-9.Full text external link opens in a new windowAbstract external link opens in a new window

865. National Institute for Health and Care Excellence. COVID-19 rapid guideline: acute myocardial injury. 2020 [internet publication].Full text external link opens in a new window

866. Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020 May 5 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

867. Xiong TY, Redwood S, Prendergast B, et al. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020 May 14;41(19):1798-800.Full text external link opens in a new windowAbstract external link opens in a new window

868. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 Jul 27 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

869. Fu EL, Janse RJ, de Jong Y, et al. Acute kidney injury and kidney replacement therapy in COVID-19: a systematic review and meta-analysis. Clin Kidney J. 2020 Sep 2;13(4):550-63.Full text external link opens in a new windowAbstract external link opens in a new window

870. Stewart DJ, Hartley JC, Johnson M, et al. Renal dysfunction in hospitalised children with COVID-19. Lancet Child Adolesc Health. 2020 Jun 15;4(8):e28-9.Full text external link opens in a new windowAbstract external link opens in a new window

871. Farkash EA, Wilson AM, Jentzen JM. Ultrastructural evidence for direct renal infection with SARS-CoV-2. J Am Soc Nephrol. 2020 May 5 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

872. Nasr SH, Kopp JB. COVID-19-associated collapsing glomerulopathy: an emerging entity. Kidney Int Rep. 2020 May 4;5(6):759-61.Full text external link opens in a new windowAbstract external link opens in a new window

873. Gross O, Moerer O, Weber M, et al. COVID-19-associated nephritis: early warning for disease severity and complications? Lancet. 2020 May 16;395(10236):e87-8.Full text external link opens in a new windowAbstract external link opens in a new window

874. Kunutsor SK, Laukkanen JA. Hepatic manifestations and complications of COVID-19: a systematic review and meta-analysis. J Infect. 2020 Jun 21 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

875. Wijarnpreecha K, Ungprasert P, Panjawatanan P, et al. COVID-19 and liver injury: a meta-analysis. Eur J Gastroenterol Hepatol. 2020 Jul 3 [Epub ahead of print].Abstract external link opens in a new window

876. Alqahtani SA, Schattenberg JM. Liver injury in COVID-19: the current evidence. United European Gastroenterol J. 2020 Jun;8(5):509-19.Full text external link opens in a new windowAbstract external link opens in a new window

877. Wong GL, Wong VW, Thompson A, et al. Management of patients with liver derangement during the COVID-19 pandemic: an Asia-Pacific position statement. Lancet Gastroenterol Hepatol. 2020 Aug;5(8):776-87.Full text external link opens in a new windowAbstract external link opens in a new window

878. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020 Apr 10;77(6):1-9.Full text external link opens in a new windowAbstract external link opens in a new window

879. Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020 Jun 1 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

880. Kandemirli SG, Dogan L, Sarikaya ZT, et al. Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology. 2020 May 8:201697.Full text external link opens in a new windowAbstract external link opens in a new window

881. Panda PK, Sharawat IK, Panda P, et al. Neurological complications of SARS-CoV-2 infection in children: a systematic review and meta-analysis. J Trop Pediatr. 2020 Sep 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

882. Orrù G, Conversano C, Malloggi E, et al. Neurological complications of COVID-19 and possible neuroinvasion pathways: a systematic review. Int J Environ Res Public Health. 2020 Sep 14;17(18):E6688.Full text external link opens in a new windowAbstract external link opens in a new window

883. Restivo DA, Centonze D, Alesina A, et al. Myasthenia gravis associated with SARS-CoV-2 infection. Ann Intern Med. 2020 Aug 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

884. Abu-Rumeileh S, Abdelhak A, Foschi M, et al. Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J Neurol. 2020 Aug 25 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

885. Fridman S, Bullrich MB, Jimenez-Ruiz A, et al. Stroke risk, phenotypes, and death in COVID-19: systematic review and newly reported cases. Neurology. 2020 Sep 15 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

886. Ntaios G, Michel P, Georgiopoulos G, et al. Characteristics and outcomes in patients with COVID-19 and acute ischemic stroke: the global COVID-19 stroke registry. Stroke. 2020 Jul 9 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

887. Qureshi AI, Abd-Allah F, Alsenani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: report of an international panel. Int J Stroke. 2020 Jul;15(5):540-54.Full text external link opens in a new windowAbstract external link opens in a new window

888. Lu Y, Li X, Geng D, et al. Cerebral micro-structural changes in COVID-19 patients: an MRI-based 3-month follow-up study. EClinicalMedicine. 2020 Aug 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

889. COVID Symptom Study. How long does COVID-19 last? 2020 [internet publication].Full text external link opens in a new window

890. Mahase E. Covid-19: what do we know about “long covid”? BMJ. 2020 Jul 14;370:m2815.Full text external link opens in a new windowAbstract external link opens in a new window

891. Carfì A, Bernabei R, Landi F, et al. Persistent symptoms in patients after acute COVID-19. JAMA. 2020 Jul 9 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

892. Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network: United States, March-June 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 31;69(30):993-8.Full text external link opens in a new windowAbstract external link opens in a new window

893. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar 13:101623.Full text external link opens in a new windowAbstract external link opens in a new window

894. Song JC, Wang G, Zhang W, et al. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Mil Med Res. 2020 Apr 20;7(1):19.Full text external link opens in a new windowAbstract external link opens in a new window

895. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020 Apr;18(4):844-7.Full text external link opens in a new windowAbstract external link opens in a new window

896. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020 Jun 4;135(23):2033-40.Full text external link opens in a new windowAbstract external link opens in a new window

897. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020 May;18(5):1023-6.Full text external link opens in a new windowAbstract external link opens in a new window

898. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020 May;18(5):1094-9.Full text external link opens in a new windowAbstract external link opens in a new window

899. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `'cytokine storm' in COVID-19. J Infect. 2020 Jun;80(6):607-13.Full text external link opens in a new windowAbstract external link opens in a new window

900. Wang Z, Yang B, Li Q, et al. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020 Mar 16 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

901. Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: a meta-analysis. J Med Virol. 2020 Apr 28 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

902. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. 2020 May 1;130(5):2202-5.Full text external link opens in a new windowAbstract external link opens in a new window

903. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the experience of clinical immunologists from China. Clin Immunol. 2020 Mar 25:108393.Full text external link opens in a new windowAbstract external link opens in a new window

904. Pain CE, Felsenstein S, Cleary G, et al. Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms. Lancet Rheumatol. 2020 May 15;2(7):e376-9.Full text external link opens in a new windowAbstract external link opens in a new window

905. Abrams JY, Godfred-Cato SE, Oster ME, et al. Multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2: a systematic review. J Pediatr. 2020 Aug 5 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

906. Godfred-Cato S, Bryant B, Leung J, et al. COVID-19–associated multisystem inflammatory syndrome in children: United States, March–July 2020. MMWR Morb Mortal Wkly Rep. 2020 Aug 14;69(32):1074-80.Full text external link opens in a new windowAbstract external link opens in a new window

907. Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis. 2020 Aug 17 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

908. Royal College of Paediatrics and Child Health. Guidance: paediatric multisystem inflammatory syndrome temporally associated with COVID-19. 2020 [internet publication].Full text external link opens in a new window

909. Centers for Disease Control and Prevention. Multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19). 2020 [internet publication].Full text external link opens in a new window

910. Radia T, Williams N, Agrawal P, et al. Multi-system inflammatory syndrome in children & adolescents (MIS-C): a systematic review of clinical features and presentation. Paediatr Respir Rev. 2020 Aug 11 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

911. Davies P, Evans C, Kanthimathinathan HK, et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study. Lancet Child Adolesc Health. 2020 Jul 9 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

912. Harwood R, Allin B, Jones CE, et al. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): results of a national Delphi process. Lancet Child Adolesc Health. 2020 Sep 18 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

913. Shulman ST. Pediatric coronavirus disease-2019-associated multisystem inflammatory syndrome. J Pediatric Infect Dis Soc. 2020 Jul 13;9(3):285-6.Full text external link opens in a new windowAbstract external link opens in a new window

914. Carter MJ, Fish M, Jennings A, et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat Med. 2020 Aug 18 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

915. Sokolovsky S, Soni P, Hoffman T, et al. COVID-19 associated Kawasaki-like multisystem inflammatory disease in an adult. Am J Emerg Med. 2020 Jun 25 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

916. Jones I, Bell LCK, Manson JJ, et al. An adult presentation consistent with PIMS-TS. Lancet Rheumatol. 2020 Jul 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

917. Shaigany S, Gnirke M, Guttmann A, et al. An adult with Kawasaki-like multisystem inflammatory syndrome associated with COVID-19. Lancet. 2020 Jul 10 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

918. Dhir SK, Kumar J, Meena J, et al. Clinical features and outcome of SARS-CoV-2 infection in neonates: a systematic review. J Trop Pediatr. 2020 Aug 28 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

919. Koehler P, Cornely OA, Böttiger BW, et al. COVID-19 associated pulmonary aspergillosis. Mycoses. 2020 Jun;63(6):528-34.Full text external link opens in a new windowAbstract external link opens in a new window

920. Blaize M, Mayaux J, Nabet C, et al. Fatal invasive aspergillosis and coronavirus disease in an immunocompetent patient. Emerg Infect Dis. 2020 Apr 28;26(7).Full text external link opens in a new windowAbstract external link opens in a new window

921. van Arkel ALE, Rijpstra TA, Belderbos HNA, et al. COVID-19 associated pulmonary aspergillosis. Am J Respir Crit Care Med. 2020 May 12 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

922. Alanio A, Dellière S, Fodil S, et al. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med. 2020 Jun;8(6):e48-9.Full text external link opens in a new windowAbstract external link opens in a new window

923. Wang J, Yang Q, Zhang P, et al. Clinical characteristics of invasive pulmonary aspergillosis in patients with COVID-19 in Zhejiang, China: a retrospective case series. Crit Care. 2020 Jun 5;24(1):299.Full text external link opens in a new windowAbstract external link opens in a new window

924. Verweij PE, Gangneux JP, Bassetti M, et al. Diagnosing COVID-19-associated pulmonary aspergillosis. Lancet Microbe. 2020 Jun;1(2):e53-5.Full text external link opens in a new windowAbstract external link opens in a new window

925. Wang F, Wang H, Fan J, et al. Pancreatic injury patterns in patients with COVID-19 pneumonia. Gastroenterology. 2020 Apr 1;159(1):367-70.Full text external link opens in a new windowAbstract external link opens in a new window

926. Bruno G, Fabrizio C, Santoro CR, et al. Pancreatic injury in the course of coronavirus disease 2019: a not-so-rare occurrence. J Med Virol. 2020 Jun 4 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

927. McNabb-Baltar J, Jin DX, Grover AS, et al. Lipase elevation in patients with COVID-19. Am J Gastroenterol. 2020 Jun 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

928. Gubatan J, Levitte S, Patel A, et al. Prevalence, risk factors and clinical outcomes of COVID-19 in patients with a history of pancreatitis in Northern California. Gut. 2020 Jun 3 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

929. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020 Jul;190(1):29-31.Full text external link opens in a new windowAbstract external link opens in a new window

930. Bomhof G, Mutsaers PGNJ, Leebeek FWG, et al. COVID-19-associated immune thrombocytopenia. Br J Haematol. 2020 Jul;190(2):e61-4.Full text external link opens in a new windowAbstract external link opens in a new window

931. See Tsao H, Chason HM, Fearon DM, et al. Immune thrombocytopenia (ITP) in a SARS-CoV-2–positive pediatric patient. Pediatrics. 2020 May [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

932. Tang MW, Nur E, Biemond BJ. Immune thrombocytopenia due to COVID-19 during pregnancy. Am J Hematol. 2020 Aug;95(8):E191-2.Full text external link opens in a new windowAbstract external link opens in a new window

933. Muller I, Cannavaro D, Dazzi D, et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020 Jul 30 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

934. Brancatella A, Ricci D, Viola N, et al. Subacute thyroiditis after SARS-CoV-2 infection. J Clin Endocrinol Metab. 2020 Jul 1;105(7):dgaa276.Full text external link opens in a new windowAbstract external link opens in a new window

935. Centre for Evidence-Based Medicine; Greenhalgh T, Treadwell J, Burrow R, et al. NEWS (or NEWS2) score when assessing possible COVID-19 patients in primary care? 2020 [internet publication].Full text external link opens in a new window

936. NHS England. After-care needs of inpatients recovering from COVID-19. 2020 [internet publication].Full text external link opens in a new window

937. George PM, Barratt SL, Condliffe R, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax. 2020 Aug 24 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

938. Centers for Disease Control and Prevention. Interim guidance for public health professionals managing people with COVID-19 in home care and isolation who have pets or other animals. 2020 [internet publication].Full text external link opens in a new window

939. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): COVID-19 and animals. 2020 [internet publication].Full text external link opens in a new window

940. Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020 May 29;368(6494):1016-20.Full text external link opens in a new windowAbstract external link opens in a new window

941. IDEXX Laboratories. Leading veterinary diagnostic company sees no COVID-19 cases in pets. 2020 [internet publication].Full text external link opens in a new window

942. Newman A, Smith D, Ghai RR, et al. First reported cases of SARS-CoV-2 infection in companion animals: New York, March-April 2020. MMWR Morb Mortal Wkly Rep. 2020 Jun 12;69(23):710-3.Full text external link opens in a new windowAbstract external link opens in a new window

943. Halfmann PJ, Hatta M, Chiba S, et al. Transmission of SARS-CoV-2 in domestic cats. N Engl J Med. 2020 Aug 6 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

944. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): if you have pets. 2020 [internet publication].Full text external link opens in a new window

945. Phelan D, Kim JH, Chung EH. A game plan for the resumption of sport and exercise after coronavirus disease 2019 (COVID-19) infection. JAMA Cardiol. 2020 May 13 [Epub ahead of print].Full text external link opens in a new windowAbstract external link opens in a new window

946. American Academy of Pediatrics. COVID-19 interim guidance: return to sports. 2020 [internet publication].Full text external link opens in a new window

Use of this content is subject to our disclaimer