References
Key articles
World Health Organization. Clinical management of COVID-19: living guideline, 18 August 2023. Aug 2023 [internet publication].Full text
Bhimraj A, Morgan RL, Hirsch Shumaker A, et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19. Aug 2024 [internet publication].Full text
National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing COVID-19. May 2024 [internet publication].Full text
World Health Organization. Therapeutics and COVID-19: living guideline. Nov 2023 [internet publication].Full text
Reference articles
1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536-44.Full text Abstract
2. World Health Organization. Tracking SARS-CoV-2 variants. Sep 2024 [internet publication].Full text
3. World Health Organization. Updated working definitions and primary actions for SARS-CoV-2 variants. Oct 2023 [internet publication].Full text
4. Nyberg T, Twohig KA, Harris RJ, et al. Risk of hospital admission for patients with SARS-CoV-2 variant B.1.1.7: cohort analysis. BMJ. 2021 Jun 15;373:n1412.Full text Abstract
5. Bager P, Wohlfahrt J, Fonager J, et al. Risk of hospitalisation associated with infection with SARS-CoV-2 lineage B.1.1.7 in Denmark: an observational cohort study. Lancet Infect Dis. 2021 Nov;21(11):1507-17.Full text Abstract
6. Patone M, Thomas K, Hatch R, et al. Mortality and critical care unit admission associated with the SARS-CoV-2 lineage B.1.1.7 in England: an observational cohort study. Lancet Infect Dis. 2021 Nov;21(11):1518-28.Full text Abstract
7. Graham MS, Sudre CH, May A, et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 2021 May;6(5):e335-45.Full text Abstract
8. Butt AA, Dargham SR, Chemaitelly H, et al. Severity of illness in persons infected with the SARS-CoV-2 Delta variant vs Beta variant in Qatar. JAMA Intern Med. 2022 Feb 1;182(2):197-205.Full text Abstract
9. World Health Organization. Statement on the update of WHO’s working definitions and tracking system for SARS-CoV-2 variants of concern and variants of interest. Mar 2023 [internet publication].Full text
10. Mallapaty S. Where did Omicron come from? Three key theories. Nature. 2022 Feb;602(7895):26-8.Full text Abstract
11. World Health Organization. Severity of disease associated with Omicron variant as compared with Delta variant in hospitalized patients with suspected or confirmed SARS-CoV-2 infection. Jun 2022 [internet publication].Full text
12. Ward IL, Bermingham C, Ayoubkhani D, et al. Risk of covid-19 related deaths for SARS-CoV-2 omicron (B.1.1.529) compared with delta (B.1.617.2): retrospective cohort study. BMJ. 2022 Aug 2;378:e070695.Full text Abstract
13. Adjei S, Hong K, Molinari NM, et al. Mortality risk among patients hospitalized primarily for COVID-19 during the Omicron and Delta variant pandemic periods: United States, April 2020 - June 2022. MMWR Morb Mortal Wkly Rep. 2022 Sep 16;71(37):1182-9.Full text Abstract
14. Kozlov M. Omicron's feeble attack on the lungs could make it less dangerous. Nature. 2022 Jan;601(7892):177.Full text Abstract
15. Hui KPY, Ng KC, Ho JCW, et al. Replication of SARS-CoV-2 Omicron BA.2 variant in ex vivo cultures of the human upper and lower respiratory tract. EBioMedicine. 2022 Sep;83:104232.Full text Abstract
16. Quinot C, Kirsebom F, Andrews N, et al. Severity of COVID-19 sub-lineages XBB/XBB 1.5/XBB1.16, EG.5.1. and JN.1. in England. Lancet Reg Health Eur. 2024 Aug;43:100975.Full text Abstract
17. World Health Organization. Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update. Oct 2024 [internet publication].Full text
18. Pijls BG, Jolani S, Atherley A, et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open. 2021 Jan 11;11(1):e044640.Full text Abstract
19. Viner RM, Mytton OT, Bonell C, et al. Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: a systematic review and meta-analysis. JAMA Pediatr. 2021 Feb 1;175(2):143-56.Full text Abstract
20. World Health Organization. COVID-19 disease in children and adolescents: scientific brief, 29 September 2021. Sep 2021 [internet publication].Full text
21. Castagnoli R, Votto M, Licari A, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 2020 Sep 1;174(9):882-9.Full text Abstract
22. Somekh I, Stein M, Karakis I, et al. Characteristics of SARS-CoV-2 infections in Israeli children during the circulation of different SARS-CoV-2 variants. JAMA Netw Open. 2021 Sep 1;4(9):e2124343.Full text Abstract
23. Chen F, Tian Y, Zhang L, et al. The role of children in household transmission of COVID-19: a systematic review and meta-analysis. Int J Infect Dis. 2022 May 11;122:266-75.Full text Abstract
24. Chou R, Dana T, Buckley DI, et al. Epidemiology of and risk factors for coronavirus infection in health care workers: a living rapid review. Ann Intern Med. 2020 Jul 21;173(2):120-36.Full text Abstract
25. Chou R, Dana T, Buckley DI, et al. Update alert 11: epidemiology of and risk factors for coronavirus infection in health care workers. Ann Intern Med. 2022 Aug;175(8):W83-4.Full text Abstract
26. Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020 May 5;133(9):1015-24.Full text Abstract
27. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727-33.Full text Abstract
28. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22;395(10224):565-74.Full text Abstract
29. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506.Full text Abstract
30. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-13.Full text Abstract
31. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020 Mar 26;382(13):1199-207.Full text Abstract
32. Roberts DL, Rossman JS, Jarić I. Dating first cases of COVID-19. PLoS Pathog. 2021 Jun;17(6):e1009620.Full text Abstract
33. Amendola A, Canuti M, Bianchi S, et al. Molecular evidence for SARS-CoV-2 in samples collected from patients with morbilliform eruptions since late 2019 in Lombardy, northern Italy. Environ Res. 2022 Aug 25;215(Pt 1):113979.Full text Abstract
34. World Health Organization. WHO-convened global study of the origins of SARS-CoV-2. Nov 2020 [internet publication].Full text
35. Meyerowitz EA, Richterman A, Gandhi RT, et al. Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Ann Intern Med. 2021 Jan;174(1):69-79.Full text Abstract
36. World Health Organization. Mask use in the context of COVID-19: interim guidance. Dec 2020 [internet publication].Full text
37. Duval D, Palmer JC, Tudge I, et al. Long distance airborne transmission of SARS-CoV-2: rapid systematic review. BMJ. 2022 Jun 29;377:e068743.Full text Abstract
38. Birgand G, Peiffer-Smadja N, Fournier S, et al. Assessment of air contamination by SARS-CoV-2 in hospital settings. JAMA Netw Open. 2020 Dec 1;3(12):e2033232.Full text Abstract
39. Razani N, Malekinejad M, Rutherford GW. Clarification regarding "Outdoor transmission of SARS-CoV-2 and other respiratory viruses: a systematic review". J Infect Dis. 2021 Sep 1;224(5):925-6.Full text Abstract
40. Francis MR, Gidado S, Nuorti JP. The risk of SARS-CoV-2 transmission in community indoor settings: a systematic review and meta-analysis. J Infect Dis. 2024 Oct 16;230(4):e824-36.Full text Abstract
41. Goldstein KM, Ghadimi K, Mystakelis H, et al. Risk of transmitting coronavirus disease 2019 during nebulizer treatment: a systematic review. J Aerosol Med Pulm Drug Deliv. 2021 Jun;34(3):155-70.Full text Abstract
42. Onakpoya IJ, Heneghan CJ, Spencer EA, et al. SARS-CoV-2 and the role of fomite transmission: a systematic review. F1000Res. 2021 Mar 24;10:233.Full text Abstract
43. Onakpoya IJ, Heneghan CJ, Spencer EA, et al. Viral cultures for assessing fomite transmission of SARS-CoV-2: a systematic review and meta-analysis. J Hosp Infect. 2022 Sep 14;130:63-94.Full text Abstract
44. Meamar FZ, Farajkhoda T, Afshani SA, et al. Investigating the mode of transmission of COVID-19 through genital secretions, semen, the birth canal, and lactation: a systematic review. J Educ Health Promot. 2024 Jul 29;13:263.Full text Abstract
45. Trypsteen W, Van Cleemput J, Snippenberg WV, et al. On the whereabouts of SARS-CoV-2 in the human body: a systematic review. PLoS Pathog. 2020 Oct;16(10):e1009037.Full text Abstract
46. Martinez-Reviejo R, Tejada S, Cipriano A, et al. Solid organ transplantation from donors with recent or current SARS-CoV-2 infection: a systematic review. Anaesth Crit Care Pain Med. 2022 May 6;41(4):101098.Full text Abstract
47. World Health Organization. Definition and categorization of the timing of mother-to-child transmission of SARS-CoV-2: scientific brief. Feb 2021 [internet publication].Full text
48. Jeganathan K, Paul AB. Vertical transmission of SARS-CoV-2: a systematic review. Obstet Med. 2022 Jun;15(2):91-8.Full text Abstract
49. Zhu F, Zozaya C, Zhou Q, et al. SARS-CoV-2 genome and antibodies in breastmilk: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2021 Sep;106(5):514-21.Full text Abstract
50. Zhou Q, Gao Y, Wang X, et al. Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Ann Transl Med. 2020 May;8(10):629.Full text Abstract
51. Centre for Evidence-Based Medicine; Heneghan C, Howdon D, Oke J, et al. The ongoing problem of UK hospital acquired infections. Oct 2020 [internet publication].Full text
52. Read JM, Green CA, Harrison EM, et al. Hospital-acquired SARS-CoV-2 infection in the UK's first COVID-19 pandemic wave. Lancet. 2021 Sep 18;398(10305):1037-8.Full text Abstract
53. Rhee C, Baker M, Vaidya V, et al. Incidence of nosocomial COVID-19 in patients hospitalized at a large US academic medical center. JAMA Netw Open. 2020 Sep 1;3(9):e2020498.Full text Abstract
54. Subramaniam A, Lim ZJ, Ponnapa Reddy M, et al. SARS-CoV-2 transmission risk to healthcare workers performing tracheostomies: a systematic review. ANZ J Surg. 2022 Jul;92(7-8):1614-25.Full text Abstract
55. Ge Y, Martinez L, Sun S, et al. COVID-19 transmission dynamics among close contacts of index patients with COVID-19: a population-based cohort study in Zhejiang Province, China. JAMA Intern Med. 2021 Oct 1;181(10):1343-50.Full text Abstract
56. Hakki S, Zhou J, Jonnerby J, et al. Onset and window of SARS-CoV-2 infectiousness and temporal correlation with symptom onset: a prospective, longitudinal, community cohort study. Lancet Respir Med. 2022 Nov;10(11):1061-73.Full text Abstract
57. Johnston C, Hughes H, Lingard S, et al. Immunity and infectivity in covid-19. BMJ. 2022 Jul 1;378:e061402.Full text Abstract
58. Jefferson T, Spencer EA, Brassey J, et al. Transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from pre and asymptomatic infected individuals: a systematic review. Clin Microbiol Infect. 2022 Feb;28(2):178-89.Full text Abstract
59. Jefferson T, Spencer EA, Onakpoya IJ, et al. Transmission of SARS-CoV-2 from pre and asymptomatic infected individuals: a systematic review update. Clin Microbiol Infect. 2022 Nov;28(11):1511-2.Full text Abstract
60. Qiu X, Nergiz AI, Maraolo AE, et al. The role of asymptomatic and pre-symptomatic infection in SARS-CoV-2 transmission: a living systematic review. Clin Microbiol Infect. 2021 Apr;27(4):511-9.Full text Abstract
61. Zhou J, Singanayagam A, Goonawardane N, et al. Viral emissions into the air and environment after SARS-CoV-2 human challenge: a phase 1, open label, first-in-human study. Lancet Microbe. 2023 Aug;4(8):e579-90.Full text Abstract
62. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020 May;63(5):706-11.Full text Abstract
63. Luo SH, Liu W, Liu ZJ, et al. A confirmed asymptomatic carrier of 2019 novel coronavirus (SARS-CoV-2). Chin Med J (Engl). 2020 May 5;133(9):1123-5.Full text Abstract
64. Lu S, Lin J, Zhang Z, et al. Alert for non-respiratory symptoms of coronavirus disease 2019 patients in epidemic period: a case report of familial cluster with three asymptomatic COVID-19 patients. J Med Virol. 2021 Jan;93(1):518-21.Full text Abstract
65. Li C, Ji F, Wang L, et al. Asymptomatic and human-to-human transmission of SARS-CoV-2 in a 2-family cluster, Xuzhou, China. Emerg Infect Dis. 2020 Mar 31;26(7).Full text Abstract
66. Liu J, Huang J, Xiang D. Large SARS-CoV-2 outbreak caused by asymptomatic traveler, China. Emerg Infect Dis. 2020 Jun 30;29(9).Full text Abstract
67. Jiang XL, Zhang XL, Zhao XN, et al. Transmission potential of asymptomatic and paucisymptomatic severe acute respiratory syndrome coronavirus 2 infections: a three-family cluster study in China. 2020 Jun 11;221(12):1948-52.Full text Abstract
68. Gao M, Yang L, Chen X, et al. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir Med. 2020 May 13;169:106026.Full text Abstract
69. Chen F, Fu D, Yang Q, et al. Low transmission risk of 9 asymptomatic carriers tested positive for both SARS-CoV-2 nucleic acid and serum IgG. J Infect. 2020 Sep;81(3):452-82.Full text Abstract
70. Danis K, Epaulard O, Bénet T, et al. Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, 2020. Clin Infect Dis. 2020 Jul 28;71(15):825-32.Full text Abstract
71. Cao S, Gan Y, Wang C, et al. Post-lockdown SARS-CoV-2 nucleic acid screening in nearly ten million residents of Wuhan, China. Nat Commun. 2020 Nov 20;11(1):5917.Full text Abstract
72. UK Health Security Agency. COVID-19 Omicron variant: infectious period and asymptomatic and symptomatic transmission. Jan 2024 [internet publication].Full text
73. Buitrago-Garcia D, Ipekci AM, Heron L, et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: update of a living systematic review and meta-analysis. PLoS Med. 2022 May;19(5):e1003987.Full text Abstract
74. Chen X, Huang Z, Wang J, et al. Ratio of asymptomatic COVID-19 cases among ascertained SARS-CoV-2 infections in different regions and population groups in 2020: a systematic review and meta-analysis including 130 123 infections from 241 studies. BMJ Open. 2021 Dec 7;11(12):e049752.Full text Abstract
75. Shang W, Kang L, Cao G, et al. Percentage of asymptomatic infections among SARS-CoV-2 Omicron variant-positive individuals: a systematic review and meta-analysis. Vaccines (Basel). 2022 Jun 30;10(7):1049.Full text Abstract
76. Stubblefield WB, Talbot HK, Feldstein L, et al. Seroprevalence of SARS-CoV-2 among frontline healthcare personnel during the first month of caring for patients with COVID-19: Nashville, Tennessee. Clin Infect Dis. 2021 May 4;72(9):1645-8.Full text Abstract
77. Althouse BM, Wenger EA, Miller JC, et al. Superspreading events in the transmission dynamics of SARS-CoV-2: opportunities for interventions and control. PLoS Biol. 2020 Nov 12;18(11):e3000897.Full text Abstract
78. Lopez AS, Hill M, Antezano J, et al. Transmission dynamics of COVID-19 outbreaks associated with child care facilities: Salt Lake City, Utah, April–July 2020. MMWR Morb Mortal Wkly Rep. 2020 Sep 18;69(37):1319-23.Full text Abstract
79. Wilson E, Donovan CV, Campbell M, et al. Multiple COVID-19 clusters on a university campus: North Carolina, August 2020. MMWR Morb Mortal Wkly Rep. 2020 Oct 2;69(39):1416-8.Full text Abstract
80. Xu W, Li X, Dong Y, et al. SARS-CoV-2 transmission in schools: an updated living systematic review (version 2; November 2020). J Glob Health. 2021 Jun 10;11:10004.Full text Abstract
81. Caini S, Martinoli C, La Vecchia C, et al. SARS-CoV-2 circulation in the school setting: a systematic review and meta-analysis. Int J Environ Res Public Health. 2022 Apr 28;19(9):5384.Full text Abstract
82. Karki SJ, Joachim A, Heinsohn T, et al. Risk of infection and contribution to transmission of SARS-CoV-2 in school staff: a systematic review. BMJ Open. 2021 Nov 3;11(11):e052690.Full text Abstract
83. Young BC, Eyre DW, Kendrick S, et al. Daily testing for contacts of individuals with SARS-CoV-2 infection and attendance and SARS-CoV-2 transmission in English secondary schools and colleges: an open-label, cluster-randomised trial. Lancet. 2021 Oct 2;398(10307):1217-29.Full text Abstract
84. Stein RA. Super-spreaders in infectious diseases. Int J Infect Dis. 2011 Aug;15(8):e510-3.Full text Abstract
85. World Health Organization. Clinical management of COVID-19: living guideline, 18 August 2023. Aug 2023 [internet publication].Full text
86. Xin H, Wong JY, Murphy C, et al. The incubation period distribution of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Clin Infect Dis. 2021 Dec 16;73(12):2344-52.Full text Abstract
87. Li B, Zhang S, Zhang R, et al. Epidemiological and clinical characteristics of COVID-19 in children: a systematic review and meta-analysis. Front Pediatr. 2020 Nov 2;8:591132.Full text Abstract
88. Wu Y, Kang L, Guo Z, et al. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis. JAMA Netw Open. 2022 Aug 1;5(8):e2228008.Full text Abstract
89. Ahammed T, Anjum A, Rahman MM, et al. Estimation of novel coronavirus (COVID-19) reproduction number and case fatality rate: a systematic review and meta-analysis. Health Sci Rep. 2021 Jun;4(2):e274.Full text Abstract
90. Tian T, Huo X. Secondary attack rates of COVID-19 in diverse contact settings, a meta-analysis. J Infect Dev Ctries. 2020 Dec 31;14(12):1361-7.Full text Abstract
91. Thompson HA, Mousa A, Dighe A, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) setting-specific transmission rates: a systematic review and meta-analysis. Clin Infect Dis. 2021 Aug 2;73(3):e754-64.Full text Abstract
92. Madewell ZJ, Yang Y, Longini IM Jr, et al. Factors associated with household transmission of SARS-CoV-2: an updated systematic review and meta-analysis. JAMA Netw Open. 2021 Aug 2;4(8):e2122240.Full text Abstract
93. Silverberg SL, Zhang BY, Li SNJ, et al. Child transmission of SARS-CoV-2: a systematic review and meta-analysis. BMC Pediatr. 2022 Apr 2;22(1):172.Full text Abstract
94. Madewell ZJ, Yang Y, Longini IM Jr, et al. Household secondary attack rates of SARS-CoV-2 by variant and vaccination status: an updated systematic review and meta-analysis. JAMA Netw Open. 2022 Apr 1;5(4):e229317.Full text Abstract
95. Kunasekaran M, Quigley A, Rahman B, et al. Factors associated with SARS-CoV-2 attack rates in aged care: a meta-analysis. Open Forum Infect Dis. 2022 Mar;9(3):ofac033.Full text Abstract
96. Viner R, Waddington C, Mytton O, et al. Transmission of SARS-CoV-2 by children and young people in households and schools: a meta-analysis of population-based and contact-tracing studies. J Infect. 2022 Mar;84(3):361-82.Full text Abstract
97. Vardavas CI, Nikitara K, Aslanoglou K, et al. Systematic review of outbreaks of COVID-19 within households in the European region when the child is the index case. BMJ Paediatr Open. 2023 Jan;7(1):e001718.Full text Abstract
98. Jørgensen SB, Nygård K, Kacelnik O, et al. Secondary attack rates for Omicron and Delta variants of SARS-CoV-2 in Norwegian households. JAMA. 2022 Apr 26;327(16):1610-1.Full text Abstract
99. Marks M, Millat-Martinez P, Ouchi D, et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. Lancet Infect Dis. 2021 May;21(5):629-36.Full text Abstract
100. Cevik M, Tate M, Lloyd O, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021 Jan;2(1):e13-22.Full text Abstract
101. Li WT, Zhang Y, Liu M, et al. Prolonged viral shedding in feces of children with COVID-19: a systematic review and synthesis of data. Eur J Pediatr. 2022 Dec;181(12):4011-7.Full text Abstract
102. Aydillo T, Gonzalez-Reiche AS, Aslam S, et al. Shedding of viable SARS-CoV-2 after immunosuppressive therapy for cancer. N Engl J Med. 2020 Dec 24;383(26):2586-8.Full text Abstract
103. Stokel-Walker C. How long does SARS-CoV-2 stay in the body? BMJ. 2022 Jun 28;377:o1555.Full text Abstract
104. Widders A, Broom A, Broom J. SARS-CoV-2: the viral shedding vs infectivity dilemma. Infect Dis Health. 2020 Aug;25(3):210-5.Full text Abstract
105. Jung J, Kim JY, Park H, et al. Transmission and infectious SARS-CoV-2 shedding kinetics in vaccinated and unvaccinated individuals. JAMA Netw Open. 2022 May 2;5(5):e2213606.Full text Abstract
106. Wu Y, Guo Z, Yuan J, et al. Duration of viable virus shedding and polymerase chain reaction positivity of the SARS-CoV-2 Omicron variant in the upper respiratory tract: a systematic review and meta-analysis. Int J Infect Dis. 2023 Apr;129:228-35.Full text Abstract
107. Menezes RG, Rizwan T, Saad Ali S, et al. Postmortem findings in COVID-19 fatalities: a systematic review of current evidence. Leg Med (Tokyo). 2021 Dec 7;54:102001.Full text Abstract
108. Lancet Respiratory Medicine. COVID-19: pathophysiology of acute disease. May 2021 [internet publication].Full text
109. Peiris S, Mesa H, Aysola A, et al. Pathological findings in organs and tissues of patients with COVID-19: a systematic review. PLoS One. 2021;16(4):e0250708.Full text Abstract
110. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271-80.Full text Abstract
111. Chen Y, Guo Y, Pan Y, et al. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020 Feb 17;525(1):135-40.Full text Abstract
112. Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020 Feb 10;176:104742. Abstract
113. Piplani S, Singh PK, Winkler DA, et al. In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Sci Rep. 2021 Jun 24;11(1):13063.Full text Abstract
114. Lei Y, Zhang J, Schiavon CR, et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2. Circ Res. 2021 Apr 30;128(9):1323-6.Full text Abstract
115. Suzuki YJ, Gychka SG. SARS-CoV-2 spike protein elicits cell signaling in human host cells: implications for possible consequences of COVID-19 vaccines. Vaccines (Basel). 2021 Jan 11;9(1):36.Full text Abstract
116. Ramanathan M, Ferguson ID, Miao W, et al. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infect Dis. 2021 Aug;21(8):1070.Full text Abstract
117. Raviraj KG, Shobhana SS. Findings and inferences from full autopsies, minimally invasive autopsies and biopsy studies in patients who died as a result of COVID19: a systematic review. Forensic Sci Med Pathol. 2022 Sep;18(3):369-81.Full text Abstract
118. Sofizan NMFBN, Rahman AFBA, Soon LP, et al. Autopsy findings in COVID-19 infection-related death: a systematic review. Egypt J Forensic Sci. 2022;12(1):22.Full text Abstract
119. Osuchowski MF, Winkler MS, Skirecki T, et al. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med. 2021 Jun;9(6):622-42.Full text Abstract
120. Milross L, Majo J, Cooper N, et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2021 Dec 3;10(1):95-106.Full text Abstract
121. Ackermann M, Kamp JC, Werlein C, et al. The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling. EBioMedicine. 2022 Nov;85:104296.Full text Abstract
122. Stenton S, McPartland J, Shukla R, et al. SARS-COV2 placentitis and pregnancy outcome: a multicentre experience during the Alpha and early Delta waves of coronavirus pandemic in England. EClinicalMedicine. 2022 May;47:101389.Full text Abstract
123. Dieter C, Brondani LA, Leitão CB, et al. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: a systematic review and meta-analysis. PLoS One. 2022 Jul 6;17(7):e0270627.Full text Abstract
124. Pecoraro V, Cuccorese M, Trenti T. Genetic polymorphisms of ACE1, ACE2, IFTM3, TMPRSS2 and TNFα genes associated with susceptibility and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. Clin Exp Med. 2023 Nov;23(7):3251-64.Full text Abstract
125. World Health Organization. Public health surveillance for COVID-19: interim guidance. Jul 2022 (addendum Aug 2023) [internet publication].Full text
126. Romero Starke K, Reissig D, Petereit-Haack G, et al. The isolated effect of age on the risk of COVID-19 severe outcomes: a systematic review with meta-analysis. BMJ Glob Health. 2021 Dec;6(12):e006434.Full text Abstract
127. Centers for Disease Control and Prevention. Underlying conditions and the higher risk for severe COVID-19. Jul 2024 [internet publication].Full text
128. de Lusignan S, Dorward J, Correa A, et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. Lancet Infect Dis. 2020 Sep;20(9):1034-42.Full text Abstract
129. Bonanad C, García-Blas S, Tarazona-Santabalbina F, et al. The effect of age on mortality in patients with COVID-19: a meta-analysis with 611,583 subjects. J Am Med Dir Assoc. 2020 Jul;21(7):915-8.Full text Abstract
130. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19): United States, February 12 - March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):343-6.Full text Abstract
131. Damayanthi HDWT, Prabani KIP. Nutritional determinants and COVID-19 outcomes of older patients with COVID-19: a systematic review. Arch Gerontol Geriatr. 2021 Mar 31;95:104411.Full text Abstract
132. Pijls BG, Jolani S, Atherley A, et al. Temporal trends of sex differences for COVID-19 infection, hospitalisation, severe disease, intensive care unit (ICU) admission and death: a meta-analysis of 229 studies covering over 10M patients. F1000Res. 2022 Jan 5;11:5.Full text Abstract
133. Twitchell DK, Christensen MB, Hackett G, et al. Examining male predominance of severe COVID-19 outcomes: a systematic review. Androg Clin Res Ther. 2022;3(1):41-53.Full text Abstract
134. Sze S, Pan D, Nevill CR, et al. Ethnicity and clinical outcomes in COVID-19: a systematic review and meta-analysis. EClinicalMedicine. 2020 Dec;29:100630.Full text Abstract
135. Mackey K, Ayers CK, Kondo KK, et al. Racial and ethnic disparities in COVID-19-related infections, hospitalizations, and deaths: a systematic review. Ann Intern Med. 2021 Mar;174(3):362-73.Full text Abstract
136. Khanijahani A, Iezadi S, Gholipour K, et al. A systematic review of racial/ethnic and socioeconomic disparities in COVID-19. Int J Equity Health. 2021 Nov 24;20(1):248.Full text Abstract
137. Irizar P, Pan D, Kapadia D, et al. Ethnic inequalities in COVID-19 infection, hospitalisation, intensive care admission, and death: a global systematic review and meta-analysis of over 200 million study participants. EClinicalMedicine. 2023 Mar;57:101877.Full text Abstract
138. Mathur R, Rentsch CT, Morton CE, et al. Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform. Lancet. 2021 May 8;397(10286):1711-24.Full text Abstract
139. Siddiq S, Ahmed S, Akram I. Clinical outcomes following COVID-19 infection in ethnic minority groups in the UK: a systematic review and meta-analysis. Public Health. 2023 Sep;222:205-14.Full text Abstract
140. Urdiales T, Dernie F, Català M, et al. Association between ethnic background and COVID-19 morbidity, mortality and vaccination in England: a multistate cohort analysis using the UK Biobank. BMJ Open. 2023 Sep 21;13(9):e074367.Full text Abstract
141. Saatci D, Ranger TA, Garriga C, et al. Association between race and COVID-19 outcomes among 2.6 million children in England. JAMA Pediatr. 2021 Sep 1;175(9):928-38.Full text Abstract
142. Acosta AM, Garg S, Pham H, et al. Racial and ethnic disparities in rates of COVID-19–associated hospitalization, intensive care unit admission, and in-hospital death in the United States from March 2020 to February 2021. JAMA Netw Open. 2021 Oct 1;4(10):e2130479.Full text Abstract
143. Magesh S, John D, Li WT, et al. Disparities in COVID-19 outcomes by race, ethnicity, and socioeconomic status: a systematic-review and meta-analysis. JAMA Netw Open. 2021 Nov 1;4(11):e2134147.Full text Abstract
144. Agyemang C, Richters A, Jolani S, et al. Ethnic minority status as social determinant for COVID-19 infection, hospitalisation, severity, ICU admission and deaths in the early phase of the pandemic: a meta-analysis. BMJ Glob Health. 2021 Nov;6(11):e007433.Full text Abstract
145. Raharja A, Tamara A, Kok LT. Association between ethnicity and severe COVID-19 disease: a systematic review and meta-analysis. J Racial Ethn Health Disparities. 2021 Sep 1;175(9):928-38.Full text Abstract
146. McMichael TM, Clark S, Pogosjans S, et al. COVID-19 in a long-term care facility: King County, Washington, February 27 – March 9, 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):339-42.Full text Abstract
147. Burki T. England and Wales see 20 000 excess deaths in care homes. Lancet. 2020 May 23;395(10237):1602.Full text Abstract
148. Graham N, Junghans C, Downes R, et al. SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes. J Infect. 2020 Sep;81(3):411-9.Full text Abstract
149. Panagiotou OA, Kosar CM, White EM, et al. Risk factors associated with all-cause 30-day mortality in nursing home residents with COVID-19. JAMA Intern Med. 2021 Apr 1;181(4):439-48.Full text Abstract
150. Liu H, Chen S, Liu M, et al. Comorbid chronic diseases are strongly correlated with disease severity among COVID-19 patients: a systematic review and meta-analysis. Aging Dis. 2020 May 9;11(3):668-78.Full text Abstract
151. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. BMJ. 2020 May 22;369:m1985.Full text Abstract
152. Norris T, Razieh C, Zaccardi F, et al. Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19. Heart. 2022 Jul 13;108(15):1200-8.Full text Abstract
153. Kompaniyets L, Pennington AF, Goodman AB, et al. Underlying medical conditions and severe illness among 540,667 adults hospitalized with COVID-19, March 2020 – March 2021. Prev Chronic Dis. 2021 Jul 1;18:E66.Full text Abstract
154. Adams ML, Katz DL, Grandpre J. Updated estimates of chronic conditions affecting risk for complications from coronavirus disease, United States. Emerg Infect Dis. 2020 Jul 3;26(9).Full text Abstract
155. Adams SH, Park MJ, Schaub JP, et al. Medical vulnerability of young adults to severe COVID-19 illness: data from the National Health Interview Survey. J Adolesc Health. 2020 Jul 9;67(3):362-8.Full text Abstract
156. Ng WH, Tipih T, Makoah NA, et al. Comorbidities in SARS-CoV-2 patients: a systematic review and meta-analysis. mBio. 2021 Feb 9;12(1):e03647-20.Full text Abstract
157. Zuin M, Rigatelli G, Bilato C, et al. Prognostic role of metabolic syndrome in COVID-19 patients: a systematic review meta-analysis. Viruses. 2021 Sep 27;13(10):1938.Full text Abstract
158. Choi JH, Choi SH, Yun KW. Risk factors for severe COVID-19 in children: a systematic review and meta-analysis. J Korean Med Sci. 2022 Feb 7;37(5):e35.Full text Abstract
159. Tadayon Najafabadi B, Rayner DG, Shokraee K, et al. Obesity as an independent risk factor for COVID-19 severity and mortality. Cochrane Database Syst Rev. 2023 May 24;5(5):CD015201.Full text Abstract
160. Qadar SMZ, Naz H, Shamim S, et al. Prevalence of obesity and its effects in patients with COVID-19: a systematic review and meta-analysis. Hosp Pharm. 2024 Jun;59(3):341-8. Abstract
161. World Obesity Federation. COVID-19 and obesity: the 2021 atlas. Mar 2021 [internet publication].Full text
162. Cai Z, Yang Y, Zhang J. Obesity is associated with severe disease and mortality in patients with coronavirus disease 2019 (COVID-19): a meta-analysis. BMC Public Health. 2021 Aug 4;21(1):1505.Full text Abstract
163. Sawadogo W, Tsegaye M, Gizaw A, et al. Overweight and obesity as risk factors for COVID-19-associated hospitalisations and death: systematic review and meta-analysis. BMJ Nutr Prev Health. 2022 Jan 19;5(1):10-18.Full text Abstract
164. Gao M, Piernas C, Astbury NM, et al. Associations between body-mass index and COVID-19 severity in 6.9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021 Jun;9(6):350-9.Full text Abstract
165. Kompaniyets L, Goodman AB, Belay B, et al. Body mass index and risk for COVID-19–related hospitalization, intensive care unit admission, invasive mechanical ventilation, and death: United States, March – December 2020. MMWR Morb Mortal Wkly Rep. 2021 Mar 12;70(10):355-61.Full text Abstract
166. Xu J, Xiao W, Liang X, et al. A meta-analysis on the risk factors adjusted association between cardiovascular disease and COVID-19 severity. BMC Public Health. 2021 Aug 11;21(1):1533.Full text Abstract
167. Ehwerhemuepha L, Roth B, Patel AK, et al. Association of congenital and acquired cardiovascular conditions with COVID-19 severity among pediatric patients in the US. JAMA Netw Open. 2022 May 2;5(5):e2211967.Full text Abstract
168. Hessami A, Shamshirian A, Heydari K, et al. Cardiovascular diseases burden in COVID-19: systematic review and meta-analysis. Am J Emerg Med. 2021 Aug;46:382-91.Full text Abstract
169. Zuin M, Rigatelli G, Bilato C, et al. Pre-existing atrial fibrillation is associated with increased mortality in COVID-19 Patients. J Interv Card Electrophysiol. 2021 Nov;62(2):231-8.Full text Abstract
170. Szarpak L, Filipiak KJ, Skwarek A, et al. Outcomes and mortality associated with atrial arrhythmias among patients hospitalized with COVID-19: a systematic review and meta-analysis. Cardiol J. 2022;29(1):33-43. Abstract
171. Liang C, Zhang W, Li S, et al. Coronary heart disease and COVID-19: a meta-analysis. Med Clin (Engl Ed). 2021 Jun 11;156(11):547-54.Full text Abstract
172. Li Y, Pei H, Zhou C, et al. Myocardial injury predicts risk of short-term all-cause mortality in patients with COVID-19: a dose-response meta-analysis. Front Cardiovasc Med. 2022 May 2;9:850447.Full text Abstract
173. Zuin M, Rigatelli G, Bilato MJ, et al. Prevalence of pre-existing peripheral artery disease in COVID-19 patients and relative mortality risk: systematic review and meta-analysis. Vascular. 2023 Dec;31(6):1103-9.Full text Abstract
174. Bae S, Kim SR, Kim MN, et al. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: a systematic review and meta-analysis. Heart. 2021 Mar;107(5):373-80.Full text Abstract
175. Pellicori P, Doolub G, Wong CM, et al. COVID-19 and its cardiovascular effects: a systematic review of prevalence studies. Cochrane Database Syst Rev. 2021 Mar 11;(3):CD013879.Full text Abstract
176. Hartmann-Boyce J, Rees K, Perring JC, et al. Risks of and from SARS-CoV-2 infection and COVID-19 in people with diabetes: a systematic review of reviews. Diabetes Care. 2021 Dec;44(12):2790-811.Full text Abstract
177. Hartmann-Boyce J, Rees K, Onakpoya I, et al. An update to the overview of reviews: risks of and from SARS-COV-2 infection and COVID-19 in people with diabetes. Diabetes Care. 2023 Dec 1;46(12):e215-6.Full text Abstract
178. Kastora S, Patel M, Carter B, et al. Impact of diabetes on COVID-19 mortality and hospital outcomes from a global perspective: an umbrella systematic review and meta-analysis. Endocrinol Diabetes Metab. 2022 Apr 20:e338.Full text Abstract
179. Chen Y, Yang D, Cheng B, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care. 2020 Jul;43(7):1399-407.Full text Abstract
180. Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020 Oct;8(10):823-33.Full text Abstract
181. Pal R, Banerjee M, Yadav U, et al. Clinical profile and outcomes in COVID-19 patients with diabetic ketoacidosis: a systematic review of literature. Diabetes Metab Syndr. 2020 Aug 18;14(6):1563-9.Full text Abstract
182. Papadopoulos VP, Koutroulos MV, Zikoudi DG, et al. Diabetes-related acute metabolic emergencies in COVID-19 patients: a systematic review and meta-analysis. Diabetol Int. 2021 Mar 23;1-15.Full text Abstract
183. Prattichizzo F, de Candia P, Nicolucci A, et al. Impact of pre-infection HbA1c levels on COVID-19 prognosis: systematic review and meta-analysis. Diabetes Metab Res Rev. 2021 May 20:e3476.Full text Abstract
184. Heidarpour M, Abhari AP, Sadeghpour N, et al. Prediabetes and COVID-19 severity, an underestimated risk factor: a systematic review and meta-analysis. Diabetes Metab Syndr. 2021 Oct 9;15(6):102307.Full text Abstract
185. Boden I, Bernabeu MO, Dhillon B, et al. Pre-existing diabetic retinopathy as a prognostic factor for COVID-19 outcomes amongst people with diabetes: a systematic review. Diabetes Res Clin Pract. 2022 Apr 5;187:109869.Full text Abstract
186. Chander S, Deepak V, Kumari R, et al. Glycemic control in critically ill COVID-19 patients: systematic review and meta-analysis. J Clin Med. 2023 Mar 28;12(7):2555.Full text Abstract
187. Nguyen NN, Ho DS, Nguyen HS, et al. Preadmission use of antidiabetic medications and mortality among patients with COVID-19 having type 2 diabetes: a meta-analysis. Metabolism. 2022 Mar 31:155196.Full text Abstract
188. Zhu Z, Zeng Q, Liu Q, et al. Association of glucose-lowering drugs with outcomes in patients with diabetes before hospitalization for COVID-19: a systematic review and network meta-analysis. JAMA Netw Open. 2022 Dec 1;5(12):e2244652.Full text Abstract
189. Apicella M, Campopiano MC, Mantuano M, et al. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020 Sep;8(9):782-92.Full text Abstract
190. Yin Y, Rohli KE, Shen P, et al. The epidemiology, pathophysiological mechanisms, and management toward COVID-19 patients with type 2 diabetes: a systematic review. Prim Care Diabetes. 2021 Sep 6;15(6):899-909.Full text Abstract
191. Zhou J, Wang Y, Xu R. Association of COVID-19 infection and the risk of new incident diabetes: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2024 Aug 26;15:1429848.Full text Abstract
192. Halpin DMG, Faner R, Sibila O, et al. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir Med. 2020 May;8(5):436-8.Full text Abstract
193. Centre for Evidence-Based Medicine; Hartmann-Boyce J, Otunla A, Drake J, et al. Asthma and COVID-19: risks and management considerations. May 2020 [internet publication].Full text
194. Gerayeli FV, Milne S, Cheung C, et al. COPD and the risk of poor outcomes in COVID-19: a systematic review and meta-analysis. EClinicalMedicine. 2021 Mar;33:100789.Full text Abstract
195. Finnerty JP, Hussain ABMA, Ponnuswamy A, et al. Asthma and COPD as co-morbidities in patients hospitalised with Covid-19 disease: a global systematic review and meta-analysis. BMC Pulm Med. 2023 Nov 22;23(1):462.Full text Abstract
196. Bloom CI, Drake TM, Docherty AB, et al. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respir Med. 2021 Jul;9(7):699-711.Full text Abstract
197. Otunla A, Rees K, Dennison P, et al. Risks of infection, hospital and ICU admission, and death from COVID-19 in people with asthma: systematic review and meta-analyses. BMJ Evid Based Med. 2022 Oct;27(5):263-73.Full text Abstract
198. World Health Organization. Asthma and COVID-19: scientific brief, 19 April 2021. Apr 2021 [internet publication].Full text
199. Sallih ASM, Wee MW, Zaki RA, et al. The outcome of COVID-19 in children with chronic lung disease: systematic review and meta-analyses. Pediatr Pulmonol. 2023 Jun;58(6):1784-97. Abstract
200. Hariyanto TI, Kurniawan A. Obstructive sleep apnea (OSA) and outcomes from coronavirus disease 2019 (COVID-19) pneumonia: a systematic review and meta-analysis. Sleep Med. 2021 Apr 1;82:47-53.Full text Abstract
201. Strausz S, Kiiskinen T, Broberg M, et al. Sleep apnoea is a risk factor for severe COVID-19. BMJ Open Respir Res. 2021 Jan;8(1):e000845.Full text Abstract
202. Mathew HR, Choi MY, Parkins MD, et al. Systematic review: cystic fibrosis in the SARS-CoV-2/COVID-19 pandemic. BMC Pulm Med. 2021 May 20;21(1):173.Full text Abstract
203. Terlizzi V, Motisi MA, Pellegrino R, et al. Risk factors for severe COVID-19 in people with cystic fibrosis: a systematic review. Front Pediatr. 2022 Aug 8;10:958658.Full text Abstract
204. Wang Y, Feng R, Xu J, et al. An updated meta-analysis on the association between tuberculosis and COVID-19 severity and mortality. J Med Virol. 2021 Oct;93(10):5682-6.Full text Abstract
205. Aggarwal AN, Agarwal R, Dhooria S, et al. Active pulmonary tuberculosis and coronavirus disease 2019: a systematic review and meta-analysis. PLoS One. 2021;16(10):e0259006.Full text Abstract
206. Ouyang L, Gong J, Yu M. Pre-existing interstitial lung disease in patients with coronavirus disease 2019: a meta-analysis. Int Immunopharmacol. 2021 Sep 9;100:108145.Full text Abstract
207. Wang Y, Hao Y, Hu M, et al. Interstitial lung disease independently associated with higher risk for COVID-19 severity and mortality: a meta-analysis of adjusted effect estimates. Int Immunopharmacol. 2022 Oct;111:109088.Full text Abstract
208. Lin YC, Lai TS, Lin SL, et al. Outcomes of coronavirus 2019 infection in patients with chronic kidney disease: a systematic review and meta-analysis. Ther Adv Chronic Dis. 2021;12:2040622321998860.Full text Abstract
209. Chung EY, Palmer SC, Natale P, et al. Incidence and outcomes of COVID-19 in people with CKD: a systematic review and meta-analysis. Am J Kidney Dis. 2021 Dec;78(6):804-15.Full text Abstract
210. Nopsopon T, Kittrakulrat J, Takkavatakarn K, et al. Covid-19 in end-stage renal disease patients with renal replacement therapies: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2021 Jun 15;15(6):e0009156.Full text Abstract
211. Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med. 2020 Jul 10;:1-9.Full text Abstract
212. Kovalic AJ, Satapathy SK, Thuluvath PJ. Prevalence of chronic liver disease in patients with COVID-19 and their clinical outcomes: a systematic review and meta-analysis. Hepatol Int. 2020 Sep;14(5):612-20.Full text Abstract
213. Liu M, Mei K, Tan Z, et al. Liver fibrosis scores and hospitalization, mechanical ventilation, severity, and death in patients with COVID-19: a systematic review and dose-response meta-analysis. Can J Gastroenterol Hepatol. 2022 Mar 29;2022:7235860.Full text Abstract
214. Middleton P, Hsu C, Lythgoe MP. Clinical outcomes in COVID-19 and cirrhosis: a systematic review and meta-analysis of observational studies. BMJ Open Gastroenterol. 2021 Oct;8(1):e000739.Full text Abstract
215. Wei B, Liu Y, Li H, et al. Impact of alcohol consumption on coronavirus disease 2019 severity: a systematic review and meta-analysis. J Med Virol. 2023 Feb;95(2):e28547. Abstract
216. Tao Z, Li Y, Cheng B, et al. Risk of severe COVID-19 increased by metabolic dysfunction-associated fatty liver disease: a meta-analysis. J Clin Gastroenterol. 2021 Nov-Dec 01;55(10):830-5.Full text Abstract
217. Targher G, Mantovani A, Byrne CD, et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated fatty liver disease and increased fibrosis scores. Gut. 2020 Aug;69(8):1545-7.Full text Abstract
218. Zhou YJ, Zheng KI, Wang XB, et al. Younger patients with MAFLD are at increased risk of severe COVID-19 illness: a multicenter preliminary analysis. J Hepatol. 2020 Sep;73(3):719-21.Full text Abstract
219. Allotey J, Stallings E, Bonet M, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ. 2020 Sep 1;370:m3320.Full text Abstract
220. Allotey J, Stallings E, Bonet M, et al. Update to living systematic review on covid-19 in pregnancy. BMJ. 2022 May 30;377:o1205.Full text Abstract
221. Khalil A, Kalafat E, Benlioglu C, et al. SARS-CoV-2 infection in pregnancy: a systematic review and meta-analysis of clinical features and pregnancy outcomes. EClinicalMedicine. 2020 Aug;25:100446.Full text Abstract
222. Zambrano LD, Ellington S, Strid P, et al. Update: characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status: United States, January 22–October 3, 2020. MMWR Morb Mortal Wkly Rep. 2020 Nov 6;69(44):1641-7.Full text Abstract
223. Vousden N, Ramakrishnan R, Bunch K, et al. Management and implications of severe COVID-19 in pregnancy in the UK: data from the UK Obstetric Surveillance System national cohort. Acta Obstet Gynecol Scand. 2022 Apr;101(4):461-70.Full text Abstract
224. Smith ER, Oakley E, Grandner GW, et al. Clinical risk factors of adverse outcomes among women with COVID-19 in the pregnancy and postpartum period: a sequential, prospective meta-analysis. Am J Obstet Gynecol. 2023 Feb;228(2):161-77.Full text Abstract
225. World Health Organization. Clinical characteristics of pregnant and nonpregnant women hospitalized with suspected or confirmed COVID-19. Sep 2024 [internet publication].Full text
226. Patanavanich R, Glantz SA. Smoking is associated with worse outcomes of COVID-19 particularly among younger adults: a systematic review and meta-analysis. BMC Public Health. 2021 Aug 16;21(1):1554.Full text Abstract
227. Gallus S, Scala M, Possenti I, et al. The role of smoking in COVID-19 progression: a comprehensive meta-analysis. Eur Respir Rev. 2023 Mar 31;32(167):220191.Full text Abstract
228. Cai G, Bossé Y, Xiao F, et al. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020 Jun 15;201(12):1557-9.Full text Abstract
229. Patanavanich R, Siripoon T, Amponnavarat S, et al. Active smokers are at higher risk of COVID-19 death: a systematic review and meta-analysis. Nicotine Tob Res. 2023 Jan 5;25(2):177-84.Full text Abstract
230. World Health Organization. Smoking and COVID-19: scientific brief. Jun 2020 [internet publication].Full text
231. Yu J Ouyang W, Chua ML, et al. SARS-CoV-2 transmission in patients with cancer at a tertiary care hospital in Wuhan, China. JAMA Oncol. 2020 Mar 25;6(7):1108-10.Full text Abstract
232. Arayici ME, Kipcak N, Kayacik U, et al. Effects of SARS-CoV-2 infections in patients with cancer on mortality, ICU admission and incidence: a systematic review with meta-analysis involving 709,908 participants and 31,732 cancer patients. J Cancer Res Clin Oncol. 2022 Jul 13;1-14.Full text Abstract
233. Naimi A, Yashmi I, Jebeleh R, et al. Comorbidities and mortality rate in COVID-19 patients with hematological malignancies: a systematic review and meta-analysis. J Clin Lab Anal. 2022 Apr 6:e24387.Full text Abstract
234. Zarifkar P, Kamath A, Robinson C, et al. Clinical characteristics and outcomes in patients with COVID-19 and cancer: a systematic review and meta-analysis. Clin Oncol (R Coll Radiol). 2021 Mar;33(3):e180-91.Full text Abstract
235. Nadkarni AR, Vijayakumaran SC, Gupta S, et al. Mortality in cancer patients with COVID-19 who are admitted to an ICU or who have severe COVID-19: a systematic review and meta-analysis. JCO Glob Oncol. 2021 Aug;7:1286-305.Full text Abstract
236. Kaur H, Thakur JS, Paika R, et al. Impact of underlying comorbidities on mortality in SARS-COV-2 infected cancer patients: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2021 May 1;22(5):1333-49.Full text Abstract
237. Chavez-MacGregor M, Lei X, Zhao H, et al. Evaluation of COVID-19 mortality and adverse outcomes in US patients with or without cancer. JAMA Oncol. 2022 Jan 1;8(1):69-78.Full text Abstract
238. Ruiz JI, Lopez-Olivo MA, Geng Y, et al. COVID-19 outcomes in patients with cancer receiving immune checkpoint inhibitors: a systematic review. J Immunother Precis Oncol. 2023 May;6(2):103-10.Full text Abstract
239. Boulad F, Kamboj M, Bouvier N, et al. COVID-19 in children with cancer in New York City. JAMA Oncol. 2020 Sep 1;6(9):1459-60.Full text Abstract
240. Mukkada S, Bhakta N, Chantada GL, et al. Global characteristics and outcomes of SARS-CoV-2 infection in children and adolescents with cancer (GRCCC): a cohort study. Lancet Oncol. 2021 Oct;22(10):1416-26.Full text Abstract
241. Dorantes-Acosta E, Ávila-Montiel D, Klünder-Klünder M, et al. Survival and complications in pediatric patients with cancer and COVID-19: a meta-analysis. Front Oncol. 2020 Jan 21;10:608282.Full text Abstract
242. Schlage S, Lehrnbecher T, Berner R, et al. SARS-CoV-2 in pediatric cancer: a systematic review. Eur J Pediatr. 2022 Apr;181(4):1413-27.Full text Abstract
243. Xu J, Xiao W, Liang X, et al. The association of cerebrovascular disease with adverse outcomes in COVID-19 patients: a meta-analysis based on adjusted effect estimates. J Stroke Cerebrovasc Dis. 2020 Nov;29(11):105283.Full text Abstract
244. Patel U, Malik P, Shah D, et al. Pre-existing cerebrovascular disease and poor outcomes of COVID-19 hospitalized patients: a meta-analysis. J Neurol. 2021 Jan;268(1):240-7.Full text Abstract
245. Huang H, Chen J, Fang S, et al. Association between previous stroke and severe COVID-19: a retrospective cohort study and an overall review of meta-analysis. Front Neurol. 2022 Jul 12;13:922936.Full text Abstract
246. Fond G, Nemani K, Etchecopar-Etchart D, et al. Association between mental health disorders and mortality among patients with COVID-19 in 7 countries: a systematic review and meta-analysis. JAMA Psychiatry. 2021 Nov 1;78(11):1208-17.Full text Abstract
247. Ceban F, Nogo D, Carvalho IP, et al. Association between mood disorders and risk of COVID-19 infection, hospitalization, and death: a systematic review and meta-analysis. JAMA Psychiatry. 2021 Oct 1;78(10):1079-91.Full text Abstract
248. Pardamean E, Roan W, Iskandar KTA, et al. Mortality from coronavirus disease 2019 (Covid-19) in patients with schizophrenia: a systematic review, meta-analysis and meta-regression. Gen Hosp Psychiatry. 2022 Feb 4;75:61-7.Full text Abstract
249. Gatti M, Rinaldi M, Bussini L, et al. Clinical outcome in solid organ transplant recipients affected by COVID-19 compared to general population: a systematic review and meta-analysis. Clin Microbiol Infect. 2022 Aug;28(8):1057-65.Full text Abstract
250. Shahzad M, Chaudhary SG, Zafar MU, et al. Impact of COVID-19 in hematopoietic stem cell transplant recipients: a systematic review and meta-analysis. Transpl Infect Dis. 2022 Jan 14:e13792.Full text Abstract
251. Clift AK, Coupland CAC, Keogh RH, et al. COVID-19 mortality risk in Down syndrome: results from a cohort study of 8 million adults. Ann Intern Med. 2021 Apr;174(4):572-6.Full text Abstract
252. Pitchan Velammal PNK, Balasubramanian S, Ayoobkhan FS, et al. COVID-19 in patients with Down syndrome: a systematic review. Immun Inflamm Dis. 2024 Mar;12(3):e1219.Full text Abstract
253. Williamson EJ, McDonald HI, Bhaskaran K, et al. Risks of covid-19 hospital admission and death for people with learning disability: population based cohort study using the OpenSAFELY platform. BMJ. 2021 Jul 14;374:n1592.Full text Abstract
254. Bosworth ML, Ayoubkhani D, Nafilyan V, et al. Deaths involving COVID-19 by self-reported disability status during the first two waves of the COVID-19 pandemic in England: a retrospective, population-based cohort study. Lancet Public Health. 2021 Nov;6(11):e817-25.Full text Abstract
255. Hariyanto TI, Putri C, Arisa J, et al. Dementia and outcomes from coronavirus disease 2019 (COVID-19) pneumonia: a systematic review and meta-analysis. Arch Gerontol Geriatr. 2020 Nov 19;93:104299.Full text Abstract
256. Saragih ID, Saragih IS, Batubara SO, et al. Dementia as a mortality predictor among older adults with COVID-19: a systematic review and meta-analysis of observational study. Geriatr Nurs. 2021 Sep-Oct;42(5):1230-9.Full text Abstract
257. Office for National Statistics. Deaths involving COVID-19, England and Wales: deaths occurring in June 2020. Jul 2020 [internet publication].Full text
258. Wang Q, Davis PB, Gurney ME, et al. COVID-19 and dementia: analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimers Dement. 2021 Aug;17(8):1297-306.Full text Abstract
259. Singson JRC, Kirley PD, Pham H, et al. Factors associated with severe outcomes among immunocompromised adults hospitalized for COVID-19: COVID-NET, 10 States, March 2020 - February 2022. MMWR Morb Mortal Wkly Rep. 2022 Jul 8;71(27):878-84.Full text Abstract
260. Fagni F, Simon D, Tascilar K, et al. COVID-19 and immune-mediated inflammatory diseases: effect of disease and treatment on COVID-19 outcomes and vaccine responses. Lancet Rheumatol. 2021 Oct;3(10):e724-36.Full text Abstract
261. Gianfrancesco M, Hyrich KL, Al-Adely S, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2020 Jul;79(7):859-66.Full text Abstract
262. Nørgård BM, Nielsen J, Knudsen T, et al. Hospitalization for COVID-19 in patients treated with selected immunosuppressant and immunomodulating agents, compared to the general population: a Danish cohort study. Br J Clin Pharmacol. 2021 Apr;87(4):2111-20.Full text Abstract
263. Tassone D, Thompson A, Connell W, et al. Immunosuppression as a risk factor for COVID-19: a meta-analysis. Intern Med J. 2021 Feb;51(2):199-205.Full text Abstract
264. Bhaskaran K, Rentsch CT, MacKenna B, et al. HIV infection and COVID-19 death: a population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet HIV. 2021 Jan;8(1):e24-32.Full text Abstract
265. Tesoriero JM, Swain CE, Pierce JL, et al. COVID-19 outcomes among persons living with or without diagnosed HIV infection in New York State. JAMA Netw Open. 2021 Feb 1;4(2):e2037069.Full text Abstract
266. Chanda D, Minchella PA, Kampamba D, et al. COVID-19 severity and COVID-19-associated deaths among hospitalized patients with HIV infection: Zambia, March-December 2020. MMWR Morb Mortal Wkly Rep. 2021 Jun 4;70(22):807-10.Full text Abstract
267. Yang X, Sun J, Patel RC, et al. Associations between HIV infection and clinical spectrum of COVID-19: a population level analysis based on US National COVID Cohort Collaborative (N3C) data. Lancet HIV. 2021 Nov;8(11):e690-700.Full text Abstract
268. SeyedAlinaghi S, Karimi A, MohsseniPour M, et al. The clinical outcomes of COVID-19 in HIV-positive patients: a systematic review of current evidence. Immun Inflamm Dis. 2021 Dec;9(4):1160-85.Full text Abstract
269. Hanson HA, Kim E, Badowski ME. A systematic review: impact of SARS-CoV-2 infection on morbidity, mortality, and viral suppression in patients living with HIV. SN Compr Clin Med. 2023;5(1):144.Full text Abstract
270. World Health Organization. Clinical features and prognostic factors of COVID-19 in people living with HIV hospitalized with suspected or confirmed SARS-CoV-2 infection. Jul 2021 [internet publication].Full text
271. Bertagnolio S, Thwin SS, Silva R, et al. Clinical features of, and risk factors for, severe or fatal COVID-19 among people living with HIV admitted to hospital: analysis of data from the WHO Global Clinical Platform of COVID-19. Lancet HIV. 2022 Jul;9(7):e486-95.Full text Abstract
272. Wang H, Jonas KJ. The likelihood of severe COVID-19 outcomes among PLHIV with various comorbidities: a comparative frequentist and Bayesian meta-analysis approach. J Int AIDS Soc. 2021 Nov;24(11):e25841.Full text Abstract
273. Rahmati M, Shamsi MM, Khoramipour K, et al. Baseline physical activity is associated with reduced mortality and disease outcomes in COVID-19: a systematic review and meta-analysis. Rev Med Virol. 2022 Apr 13:e2349.Full text Abstract
274. Centers for Disease Control and Prevention. Brief summary of findings on the association between physical inactivity and severe COVID-19 outcomes. 2022 [internet publication].Full text
275. Ezzatvar Y, Ramírez-Vélez R, Izquierdo M, et al. Physical activity and risk of infection, severity and mortality of COVID-19: a systematic review and non-linear dose-response meta-analysis of data from 1 853 610 adults. Br J Sports Med. 2022 Aug 22 [Epub ahead of print].Full text Abstract
276. Rejeki PS, Witarto BS, Witarto AP, et al. Importance of moderate-to-vigorous physical activity during the COVID-19 pandemic: a systematic review and meta-analysis. J Basic Clin Physiol Pharmacol. 2023 Mar 24;34(3):311-20. Abstract
277. Michelon I, Vilbert M, Pinheiro IS, et al. COVID-19 outcomes in patients with sickle cell disease and sickle cell trait compared with individuals without sickle cell disease or trait: a systematic review and meta-analysis. EClinicalMedicine. 2023 Dec;66:102330.Full text Abstract
278. Lee JX, Chieng WK, Lau SCD, et al. COVID-19 and hemoglobinopathies: a systematic review of clinical presentations, investigations, and outcomes. Front Med (Lausanne). 2021 Oct 13;8:757510.Full text Abstract
279. Silva Borborema T, Moreira Brito JC, Lima Batista EM, et al. Case fatality rate and severity of COVID-19 among patients with sickle cell disease: a systematic review and meta-analysis. Hemoglobin. 2023 Nov;47(2):85-96. Abstract
280. Clift AK, Saatci D, Coupland CAC, et al. Sickle cell disorders and severe COVID-19 outcomes: a cohort study. Ann Intern Med. 2021 Oct;174(10):1483-7.Full text Abstract
281. Panepinto JA, Brandow A, Mucalo L, et al. Coronavirus disease among persons with sickle cell disease, United States, March 20 – May 21, 2020. Emerg Infect Dis. 2020 Jul 8;26(10).Full text Abstract
282. Hussain FA, Njoku FU, Saraf SL, et al. COVID-19 infection in patients with sickle cell disease. Br J Haematol. 2020 Jun;189(5):851-2.Full text Abstract
283. Nur E, Gaartman AE, van Tuijn CFJ, et al. Vaso-occlusive crisis and acute chest syndrome in sickle cell disease due to 2019 novel coronavirus disease (COVID-19). Am J Hematol. 2020 Jun;95(6):725-6.Full text Abstract
284. World Health Organization. Hypertension and COVID-19. Jun 2021 [internet publication].Full text
285. Qian Z, Li Z, Peng J, et al. Association between hypertension and prognosis of patients with COVID-19: a systematic review and meta-analysis. Clin Exp Hypertens. 2022 May 8:1-8. Abstract
286. Pranata R, Lim MA, Huang I, et al. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: a systematic review, meta-analysis and meta-regression. J Renin Angiotensin Aldosterone Syst. 2020 Apr-Jun;21(2):1470320320926899.Full text Abstract
287. Kabia AU, Li P, Jin Z, et al. The effects of hypertension on the prognosis of coronavirus disease 2019: a systematic review and meta-analysis on the interactions with age and antihypertensive treatment. J Hypertens. 2022 Dec 1;40(12):2323-36.Full text Abstract
288. de Almeida-Pititto B, Dualib PM, Zajdenverg L, et al. Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetol Metab Syndr. 2020 Aug 31;12:75.Full text Abstract
289. Du Y, Zhou N, Zha W, et al. Hypertension is a clinically important risk factor for critical illness and mortality in COVID-19: a meta-analysis. Nutr Metab Cardiovasc Dis. 2021 Mar 10;31(3):745-55.Full text Abstract
290. Goldstein MR, Poland GA, Graeber CW. Are certain drugs associated with enhanced mortality in COVID-19? QJM. 2020 Jul 1;113(7):509-10.Full text Abstract
291. Mackey K, King VJ, Gurley S, et al. Risks and impact of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers on SARS-CoV-2 infection in adults: a living systematic review. Ann Intern Med. 2020 Aug 4;173(3):195-203.Full text Abstract
292. Mackey K, Kansagara D, Vela K. Update alert 10: risks and impact of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers on SARS-CoV-2 infection in adults. Ann Intern Med. 2023 May;176(5):eL230049.Full text Abstract
293. Baillargeon J, Polychronopoulou E, Kuo YF, et al. The impact of substance use disorder on COVID-19 outcomes. Psychiatr Serv. 2021 May 1;72(5):578-81.Full text Abstract
294. Allen B, El Shahawy O, Rogers ES, et al. Association of substance use disorders and drug overdose with adverse COVID-19 outcomes in New York City: January-October 2020. J Public Health (Oxf). 2021 Sep 22;43(3):462-5.Full text Abstract
295. Behnoush AH, Bazmi E, Forouzesh M, et al. Risk of COVID-19 infection and the associated hospitalization, ICU admission and mortality in opioid use disorder: a systematic review and meta-analysis. Addict Sci Clin Pract. 2022 Nov 30;17(1):68.Full text Abstract
296. Aparicio C, Willis ZI, Nakamura MM, et al. Risk factors for pediatric critical COVID-19: a systematic review and meta-analysis. J Pediatric Infect Dis Soc. 2024 Jul 20;13(7):352-62.Full text Abstract
297. Kompaniyets L, Agathis NT, Nelson JM, et al. Underlying medical conditions associated with severe COVID-19 illness among children. JAMA Netw Open. 2021 Jun 1;4(6):e2111182.Full text Abstract
298. Akbar MR, Wibowo A, Pranata R, et al. Low serum 25-hydroxyvitamin d (vitamin d) level is associated with susceptibility to COVID-19, severity, and mortality: a systematic review and meta-analysis. Front Nutr. 2021 Mar 29;8:660420.Full text Abstract
299. Crafa A, Cannarella R, Condorelli RA, et al. Influence of 25-hydroxy-cholecalciferol levels on SARS-CoV-2 infection and COVID-19 severity: a systematic review and meta-analysis. EClinicalMedicine. 2021 Jul;37:100967.Full text Abstract
300. Szarpak L, Rafique Z, Gasecka A, et al. A systematic review and meta-analysis of effect of vitamin D levels on the incidence of COVID-19. Cardiol J. 2021;28(5):647-54.Full text Abstract
301. Shah K, V P V, Pandya A, et al. Low vitamin D levels and prognosis in a COVID-19 pediatric population: a systematic review. QJM. 2021 Nov 5;114(7):447-53.Full text Abstract
302. Borsche L, Glauner B, von Mendel J. COVID-19 mortality risk correlates inversely with vitamin D3 status, and a mortality rate close to zero could theoretically be achieved at 50 ng/mL 25(OH)D3: results of a systematic review and meta-analysis. Nutrients. 2021 Oct 14;13(10):3596.Full text Abstract
303. Ebrahimzadeh A, Mohseni S, Narimani B, et al. Association between vitamin D status and risk of covid-19 in-hospital mortality: a systematic review and meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2021 Dec 9:1-11. Abstract
304. Dissanayake HA, de Silva NL, Sumanatilleke M, et al. Prognostic and therapeutic role of vitamin D in COVID-19: systematic review and meta-analysis. J Clin Endocrinol Metab. 2022 Apr 19;107(5):1484-502.Full text Abstract
305. Bassatne A, Basbous M, Chakhtoura M, et al. The link between COVID-19 and vitamin D (VIVID): a systematic review and meta-analysis. Metabolism. 2021 Mar 24:154753.Full text Abstract
306. Grove A, Osokogu O, Al-Khudairy L, et al. Association between vitamin D supplementation or serum vitamin D level and susceptibility to SARS-CoV-2 infection or COVID-19 including clinical course, morbidity and mortality outcomes? A systematic review. BMJ Open. 2021 May 28;11(5):e043737.Full text Abstract
307. Bignardi PR, de Andrade Castello P, de Matos Aquino B, et al. Is the vitamin D status of patients with COVID-19 associated with reduced mortality? A systematic review and meta-analysis. Arch Endocrinol Metab. 2023 Mar 10;67(2):276-88.Full text Abstract
308. Chen J, Mei K, Xie L, et al. Low vitamin D levels do not aggravate COVID-19 risk or death, and vitamin D supplementation does not improve outcomes in hospitalized patients with COVID-19: a meta-analysis and GRADE assessment of cohort studies and RCTs. Nutr J. 2021 Oct 31;20(1):89.Full text Abstract
309. Fatima K, Almas T, Lakhani S, et al. The use of proton pump inhibitors and COVID-19: a systematic review and meta-analysis. Trop Med Infect Dis. 2022 Feb 28;7(3):37.Full text Abstract
310. Li GF, An XX, Yu Y, et al. Do proton pump inhibitors influence SARS-CoV-2 related outcomes? A meta-analysis. Gut. 2021 Sep;70(9):1806-8.Full text Abstract
311. Einarsdottir MJ, Kibiwott Kirui B, Li H, et al. Impact of chronic oral glucocorticoid treatment on mortality in patients with COVID-19: analysis of a population-based cohort. BMJ Open. 2024 Mar 15;14(3):e080640.Full text Abstract
312. Akiyama S, Hamdeh S, Micic D, et al. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis. Ann Rheum Dis. 2021 Mar;80(3):384-91.Full text Abstract
313. Conway R, Grimshaw AA, Konig MF, et al. SARS-CoV-2 infection and COVID-19 outcomes in rheumatic diseases: a systematic literature review and meta-analysis. Arthritis Rheumatol. 2022 May;74(5):766-75.Full text Abstract
314. Izadi Z, Brenner EJ, Mahil SK, et al. Association between tumor necrosis factor inhibitors and the risk of hospitalization or death among patients with immune-mediated inflammatory disease and COVID-19. JAMA Netw Open. 2021 Oct 1;4(10):e2129639.Full text Abstract
315. Andersen KM, Bates BA, Rashidi ES, et al. Long-term use of immunosuppressive medicines and in-hospital COVID-19 outcomes: a retrospective cohort study using data from the National COVID Cohort Collaborative. Lancet Rheumatol. 2022 Jan;4(1):e33-41.Full text Abstract
316. Tripathi K, Godoy Brewer G, Thu Nguyen M, et al. COVID-19 and outcomes in patients with inflammatory bowel disease: systematic review and meta-analysis. Inflamm Bowel Dis. 2022 Aug 1;28(8):1265-79.Full text Abstract
317. Batsiou A, Mantzios P, Piovani D, et al. SARS-CoV-2 infection and outcomes in children with inflammatory bowel diseases: a systematic review. J Clin Med. 2022 Dec 6;11(23):7238.Full text Abstract
318. Lee MH, Li HJ, Wasuwanich P, et al. COVID-19 susceptibility and clinical outcomes in inflammatory bowel disease: an updated systematic review and meta-analysis. Rev Med Virol. 2023 Mar;33(2):e2414.Full text Abstract
319. Alrashed F, Battat R, Abdullah I, et al. Impact of medical therapies for inflammatory bowel disease on the severity of COVID-19: a systematic review and meta-analysis. BMJ Open Gastroenterol. 2021 Oct;8(1):e000774.Full text Abstract
320. Bezzio C, Saibeni S, Variola A, et al. Outcomes of COVID-19 in 79 patients with IBD in Italy: an IG-IBD study. Gut. 2020 Jul;69(7):1213-7.Full text Abstract
321. Singh S, Khan A, Chowdhry M, et al. Risk of severe coronavirus disease 2019 in patients with inflammatory bowel disease in the united states: a multicenter research network study. Gastroenterology. 2020 Oct;159(4):1575-8.Full text Abstract
322. Ungaro RC, Brenner EJ, Gearry RB, et al. Effect of IBD medications on COVID-19 outcomes: results from an international registry. Gut. 2021 Apr;70(4):725-32.Full text Abstract
323. Singh AK, Jena A, Kumar-M P, et al. Risk and outcomes of coronavirus disease in patients with inflammatory bowel disease: a systematic review and meta-analysis. United European Gastroenterol J. 2021 Mar;9(2):159-76.Full text Abstract
324. Sperger J, Shah KS, Lu M, et al. Development and validation of multivariable prediction models for adverse COVID-19 outcomes in patients with IBD. BMJ Open. 2021 Nov 12;11(11):e049740.Full text Abstract
325. Sakthiswary R, Chuah HY, Chiang KS, et al. COVID-19 in systemic lupus erythematosus: a pooled analysis and systematic review of case reports and series. Lupus. 2021 Oct;30(12):1946-54.Full text Abstract
326. Rutherford MA, Scott J, Karabayas M, et al. Risk factors for severe outcomes in patients with systemic vasculitis and COVID-19: a binational, registry-based cohort study. Arthritis Rheumatol. 2021 Sep;73(9):1713-9.Full text Abstract
327. Sattui SE, Conway R, Putman MS, et al. Outcomes of COVID-19 in patients with primary systemic vasculitis or polymyalgia rheumatica from the COVID-19 Global Rheumatology Alliance physician registry: a retrospective cohort study. Lancet Rheumatol. 2021 Dec;3(12):e855-64.Full text Abstract
328. Louapre C, Collongues N, Stankoff B, et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020 Sep 1;77(9):1079-88.Full text Abstract
329. Salter A, Fox RJ, Newsome SD, et al. Outcomes and risk factors associated with SARS-CoV-2 infection in a North American registry of patients with multiple sclerosis. JAMA Neurol. 2021 Jun 1;78(6):699-708.Full text Abstract
330. Januel E, Hajage D, Labauge P, et al. Association between anti-CD20 therapies and COVID-19 severity among patients with relapsing-remitting and progressive multiple sclerosis. JAMA Netw Open. 2023 Jun 1;6(6):e2319766.Full text Abstract
331. Barzegar M, Mirmosayyeb O, Gajarzadeh M, et al. COVID-19 among patients with multiple sclerosis: a systematic review. Neurol Neuroimmunol Neuroinflamm. 2021 Jul;8(4):e1001.Full text Abstract
332. Aghajanian S, Shafiee A, Akhondi A, et al. The effect of COVID-19 on multiple sclerosis relapse: a systematic review and meta-analysis. Mult Scler Relat Disord. 2023 Nov 5;81:105128. Abstract
333. Giovanella L, Ruggeri RM, Ovčariček PP, et al. Prevalence of thyroid dysfunction in patients with COVID-19: a systematic review. Clin Transl Imaging. 2021 Mar 11:1-8.Full text Abstract
334. Malik J, Zaidi SMJ, Waqar AU, et al. Association of hypothyroidism with acute COVID-19: a systematic review. Expert Rev Endocrinol Metab. 2021 Sep;16(5):251-7. Abstract
335. Damara FA, Muchamad GR, Ikhsani R, et al. Thyroid disease and hypothyroidism are associated with poor COVID-19 outcomes: a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2021 Oct 22;15(6):102312.Full text Abstract
336. Permana H, Soeriadi EA, Damara FA, et al. The prognostic values of thyroid disorders in predicting COVID-19 composite poor outcomes: a systematic review and meta-analysis. Diabetes Metab Syndr. 2022 Mar 18;16(5):102464.Full text Abstract
337. Putri C, Hariyanto TI, Hananto JE, et al. Parkinson's disease may worsen outcomes from coronavirus disease 2019 (COVID-19) pneumonia in hospitalized patients: a systematic review, meta-analysis, and meta-regression. Parkinsonism Relat Disord. 2021 Jun;87:155-61.Full text Abstract
338. Chambergo-Michilot D, Barros-Sevillano S, Rivera-Torrejón O, et al. Factors associated with COVID-19 in people with Parkinson's disease: a systematic review and meta-analysis. Eur J Neurol. 2021 Oct;28(10):3467-77.Full text Abstract
339. Khoshnood RJ, Zali A, Tafreshinejad A, et al. Parkinson's disease and COVID-19: a systematic review and meta-analysis. Neurol Sci. 2022 Feb;43(2):775-83.Full text Abstract
340. Jaiswal V, Alquraish D, Sarfraz Z, et al. The influence of coronavirus disease-2019 (COVID-19) on Parkinson's disease: an updated systematic review. J Prim Care Community Health. 2021 Jan-Dec;12:21501327211039709.Full text Abstract
341. Topless RK, Gaffo A, Stamp LK, et al. Gout and the risk of COVID-19 diagnosis and death in the UK Biobank: a population-based study. Lancet Rheumatol. 2022 Apr;4(4):e274-81.Full text Abstract
342. Choi GJ, Kim HM, Kang H. The potential role of dyslipidemia in COVID-19 severity: an umbrella review of systematic reviews. J Lipid Atheroscler. 2020 Sep;9(3):435-48.Full text Abstract
343. Zuin M, Rigatelli G, Bilato C, et al. Dyslipidaemia and mortality in COVID-19 patients: a meta-analysis. QJM. 2021 Oct 7;114(6):390-7.Full text Abstract
344. Liu Y, Pan Y, Yin Y, et al. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): a meta-analysis. Virol J. 2021 Jul 27;18(1):157.Full text Abstract
345. Atmosudigdo IS, Pranata R, Lim MA, et al. Dyslipidemia increases the risk of severe COVID-19: a systematic review, meta-analysis, and meta-regression. J Clin Exp Hepatol. 2021 Feb 8 [Epub ahead of print].Full text Abstract
346. Kow CS, Hasan SS. The association between the use of statins and clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2022 Mar;22(2):167-81.Full text Abstract
347. Daniels LB, Ren J, Kumar K, et al. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: findings from the American Heart Association's COVID-19 Cardiovascular Disease Registry. PLoS One. 2021 Jul 15;16(7):e0254635.Full text Abstract
348. Bergqvist R, Ahlqvist VH, Lundberg M, et al. HMG-CoA reductase inhibitors and COVID-19 mortality in Stockholm, Sweden: a registry-based cohort study. PLoS Med. 2021 Oct;18(10):e1003820.Full text Abstract
349. Doglietto F, Vezzoli M, Gheza F, et al. Factors associated with surgical mortality and complications among patients with and without coronavirus disease 2019 (COVID-19) in Italy. JAMA Surg. 2020 Jun 12;155(8):1-14.Full text Abstract
350. Lei S, Jiang F, Su W, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. 2020 Apr 5:100331.Full text Abstract
351. COVIDSurg Collaborative. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lancet. 2020 Jul 4;396(10243):27-38.Full text Abstract
352. Liu N, Zhang T, Ma L, et al. The impact of ABO blood group on COVID-19 infection risk and mortality: A systematic review and meta-analysis. Blood Rev. 2020 Dec 8:100785.Full text Abstract
353. Gutiérrez-Valencia M, Leache L, Librero J, et al. ABO blood group and risk of COVID-19 infection and complications: a systematic review and meta-analysis. Transfusion. 2022 Feb;62(2):493-505.Full text Abstract
354. Soo KM, Chung KM, Mohd Azlan MAA, et al. The association of ABO and Rhesus blood type with the risks of developing SARS-CoV-2 infection: a meta-analysis. Trop Biomed. 2022 Mar 1;39(1):126-34.Full text Abstract
355. Balaouras G, Eusebi P, Kostoulas P. Systematic review and meta-analysis of the effect of ABO blood group on the risk of SARS-CoV-2 infection. PLoS One. 2022 Jul 28;17(7):e0271451.Full text Abstract
356. Franchini M, Cruciani M, Mengoli C, et al. ABO blood group and COVID-19: an updated systematic literature review and meta-analysis. Blood Transfus. 2021 May 12;19(4):317-26.Full text Abstract
357. Butler EA, Parikh R, Grandi SM, et al. ABO and Rh blood groups and risk of infection: systematic review and meta-analysis. BMC Infect Dis. 2023 Nov 14;23(1):797.Full text Abstract
358. Severe Covid-19 GWAS Group; Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020 Oct 15;383(16):1522-34.Full text Abstract
359. Wu SC, Arthur CM, Wang J, et al. The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A. Blood Adv. 2021 Mar 9;5(5):1305-9.Full text Abstract
360. Yamamoto S, Saito M, Tamura A, et al. The human microbiome and COVID-19: a systematic review. PLoS One. 2021 Jun 23;16(6):e0253293.Full text Abstract
361. Cheng X, Zhang Y, Li Y, et al. Meta-analysis of 16S rRNA microbial data identified alterations of the gut microbiota in COVID-19 patients during the acute and recovery phases. BMC Microbiol. 2022 Nov 14;22(1):274.Full text Abstract
362. Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020 May 13;285:198018.Full text Abstract
363. Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020 Sep;159(3):944-55.Full text Abstract
364. Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis. 2020 Dec 17;71(10):2669-78.Full text Abstract
365. Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021 Apr;70(4):698-706.Full text Abstract
366. Zheng HL, Guo ZL, Wang ML, et al. Effects of climate variables on the transmission of COVID-19: a systematic review of 62 ecological studies. Environ Sci Pollut Res Int. 2021 Oct;28(39):54299-316.Full text Abstract
367. Centre for Evidence-Based Medicine; Hoang U, Jones NR. Is there an association between exposure to air pollution and severity of COVID-19 infection? 2020 [internet publication].Full text
368. Copat C, Cristaldi A, Fiore M, et al. The role of air pollution (PM and NO₂) in COVID-19 spread and lethality: a systematic review. Environ Res. 2020 Aug 24;191:110129.Full text Abstract
369. Frontera A, Cianfanelli L, Vlachos K, et al. Severe air pollution links to higher mortality in COVID-19 patients: the “double-hit” hypothesis. J Infect. 2020 Aug;81(2):255-9.Full text Abstract
370. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci Total Environ. 2020 Apr 11;726:138605.Full text Abstract
371. Yu Z, Bellander T, Bergström A, et al. Association of short-term air pollution exposure with SARS-CoV-2 infection among young adults in Sweden. JAMA Netw Open. 2022 Apr 1;5(4):e228109.Full text Abstract
372. Bowyer RCE, Varsavsky T, Thompson EJ, et al. Geo-social gradients in predicted COVID-19 prevalence in Great Britain: results from 1 960 242 users of the COVID-19 Symptoms Study app. Thorax. 2021 Jul;76(7):723-5.Full text Abstract
373. World Health Organization. WHO SAGE Roadmap for prioritizing uses of COVID-19 vaccines. Nov 2023 [internet publication].Full text
374. Graña C, Ghosn L, Evrenoglou T, et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev. 2022 Dec 7;12(12):CD015477.Full text Abstract
375. Prasad S, Kalafat E, Blakeway H, et al. Systematic review and meta-analysis of the effectiveness and perinatal outcomes of COVID-19 vaccination in pregnancy. Nat Commun. 2022 May 10;13(1):2414.Full text Abstract
376. Carbone L, Trinchillo MG, Di Girolamo R, et al. COVID-19 vaccine and pregnancy outcomes: a systematic review and meta-analysis. Int J Gynaecol Obstet. 2022 Dec;159(3):651-61.Full text Abstract
377. Hagrass AI, Almadhoon HW, Al-Kafarna M, et al. Maternal and neonatal safety outcomes after SAR-CoV-2 vaccination during pregnancy: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2022 Jul 21;22(1):581.Full text Abstract
378. Tormen M, Taliento C, Salvioli S, et al. Effectiveness and safety of COVID-19 vaccine in pregnant women: a systematic review with meta-analysis. BJOG. 2023 Mar;130(4):348-57.Full text Abstract
379. Shafiee A, Kohandel Gargari O, Teymouri Athar MM, et al. COVID-19 vaccination during pregnancy: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2023 Jan 20;23(1):45.Full text Abstract
380. Badell ML, Dude CM, Rasmussen SA, et al. Covid-19 vaccination in pregnancy. BMJ. 2022 Aug 10;378:e069741.Full text Abstract
381. Carlsen EØ, Magnus MC, Oakley L, et al. Association of COVID-19 vaccination during pregnancy with incidence of SARS-CoV-2 infection in infants. JAMA Intern Med. 2022 Aug 1;182(8):825-31.Full text Abstract
382. Halasa NB, Olson SM, Staat MA, et al. Maternal vaccination and risk of hospitalization for Covid-19 among infants. N Engl J Med. 2022 Jul 14;387(2):109-19.Full text Abstract
383. Hanna N, Heffes-Doon A, Lin X, et al. Detection of messenger RNA COVID-19 vaccines in human breast milk. JAMA Pediatr. 2022 Dec 1;176(12):1268-70.Full text Abstract
384. Hamouda NI, Amin AM, Hasan MT, et al. Persistence of COVID-19 human milk antibodies after maternal COVID-19 vaccination: systematic review and meta-regression analysis. Cureus. 2024 May;16(5):e59500.Full text Abstract
385. Du Y, Chen L, Shi Y. Safety, immunogenicity, and efficacy of COVID-19 vaccines in adolescents, children, and infants: a systematic review and meta-analysis. Front Public Health. 2022 Apr 14;10:829176.Full text Abstract
386. Shafiq A, Salameh MA, Laswi I, et al. Neurological immune-related adverse events post-COVID-19 vaccination: a systematic review. J Clin Pharmacol. 2022 Mar;62(3):291-303.Full text Abstract
387. Sessa F, Salerno M, Esposito M, et al. Autopsy findings and causality relationship between death and COVID-19 vaccination: a systematic review. J Clin Med. 2021 Dec 15;10(24):5876.Full text Abstract
388. Bellinato F, Fratton Z, Girolomoni G, et al. Cutaneous adverse reactions to SARS-CoV-2 vaccines: a systematic review and meta-analysis. Vaccines (Basel). 2022 Sep 6;10(9):1475.Full text Abstract
389. Patrizio A, Ferrari SM, Elia G, et al. Graves' disease following SARS-CoV-2 vaccination: a systematic review. Vaccines (Basel). 2022 Sep 1;10(9):1445.Full text Abstract
390. Baqi DH, Kakamad FH, Mahmood ZH, et al. Myocardial infarction following COVID-19 vaccine administration; a systematic review. Heliyon. 2022 Nov;8(11):e11385.Full text Abstract
391. Abu Serhan H, Abdelaal A, Abuawwad MT, et al. Ocular vascular events following COVID-19 vaccines: a systematic review. Vaccines (Basel). 2022 Dec 14;10(12):2143.Full text Abstract
392. Kwan AC, Ebinger JE, Wei J, et al. Apparent risks of postural orthostatic tachycardia syndrome diagnoses after COVID-19 vaccination and SARS-Cov-2 infection. Nat Cardiovasc Res. 2022 Dec;1(12):1187-94.Full text Abstract
393. Faksova K, Walsh D, Jiang Y, et al. COVID-19 vaccines and adverse events of special interest: a multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals. Vaccine. 2024 Apr 2;42(9):2200-11.Full text Abstract
394. Fraiman J, Erviti J, Jones M, et al. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022 Sep 22;40(40):5798-805.Full text Abstract
395. Nafilyan V, Bermingham CR, Ward IL, et al. Risk of death following COVID-19 vaccination or positive SARS-CoV-2 test in young people in England. Nat Commun. 2023 Mar 27;14(1):1541.Full text Abstract
396. Marchand G, Masoud AT, Medi S. Risk of all-cause and cardiac-related mortality after vaccination against COVID-19: a meta-analysis of self-controlled case series studies. Hum Vaccin Immunother. 2023 Aug 1;19(2):2230828.Full text Abstract
397. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): similarities and differences. Pathol Res Pract. 2023 Jun;246:154497.Full text Abstract
398. Bhimraj A, Morgan RL, Hirsch Shumaker A, et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19. Aug 2024 [internet publication].Full text
399. ClinicalTrials.gov. A study to investigate the prevention of COVID-19 with VYD222 in adults with immune compromise and in participants aged 12 years or older who are at risk of exposure to SARS-CoV-2. Sep 2024 [internet publication].Full text
400. World Health Organization. Drugs to prevent COVID-19: living guideline. Mar 2023 [internet publication].Full text
401. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing COVID-19. May 2024 [internet publication].Full text
402. World Health Organization. Therapeutics and COVID-19: living guideline. Nov 2023 [internet publication].Full text
403. National Institute for Health and Care Excellence. Tixagevimab plus cilgavimab for preventing COVID-19. Jun 2023 [internet publication.Full text
404. Alhumaid S, Al Mutair A, Alali J, et al. Efficacy and safety of tixagevimab/cilgavimab to prevent COVID-19 (pre-exposure prophylaxis): a systematic review and meta-analysis. Diseases. 2022 Dec 1;10(4):118.Full text Abstract
405. Bartoszko JJ, Siemieniuk RAC, Kum E, et al. Prophylaxis against covid-19: living systematic review and network meta-analysis. BMJ. 2021 Apr 26;373:n949.Full text Abstract
406. Bartoszko JJ, Siemieniuk RAC, Kum E, et al. Update to living systematic review on prophylaxis against covid-19. BMJ. 2023 Mar 23;380:688.Full text Abstract
407. World Health Organization. Infection prevention and control in the context of COVID-19: a guideline. Dec 2023 [internet publication].Full text
408. Schoberer D, Osmancevic S, Reiter L, et al. Rapid review and meta-analysis of the effectiveness of personal protective equipment for healthcare workers during the COVID-19 pandemic. Public Health Pract (Oxf). 2022 Dec;4:100280.Full text Abstract
409. UK Health Security Agency. Face coverings and COVID-19: statement from an expert panel. Mar 2023 [internet publication].Full text
410. Wu G, Ji Q, Shi Y. A systematic review and meta-analysis of the efficacy of N95 respirators and surgical masks for protection against COVID-19. Prev Med Rep. 2023 Dec;36:102414.Full text Abstract
411. Razai MS, Doerholt K, Ladhani S, et al. Coronavirus disease 2019 (covid-19): a guide for UK GPs. BMJ. 2020 Mar 5;368:m800.Full text Abstract
412. World Health Organization. Advice for the public: coronavirus disease (COVID-19). Mar 2023 [internet publication].Full text
413. Jefferson T, Dooley L, Ferroni E, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev. 2023 Jan 30;1(1):CD006207.Full text Abstract
414. Chou R, Dana T, Jungbauer R, et al. Masks for prevention of respiratory virus infections, including SARS-CoV-2, in health care and community settings: a living rapid review. Ann Intern Med. 2020 Oct 6;173(7):542-55.Full text Abstract
415. Chou R, Dana T. Major update: masks for prevention of SARS-CoV-2 in health care and community settings -final update of a living, rapid review. Ann Intern Med. 2023 Jun;176(6):827-35.Full text Abstract
416. Bundgaard H, Bundgaard JS, Raaschou-Pedersen DET, et al. Effectiveness of adding a mask recommendation to other public health measures to prevent SARS-CoV-2 infection in Danish mask wearers: a randomized controlled trial. Ann Intern Med. 2021 Mar;174(3):335-43.Full text Abstract
417. Sandlund J, Duriseti R, Ladhani SN, et al. Child mask mandates for COVID-19: a systematic review. Arch Dis Child. 2024 Feb 19;109(3):e2.Full text Abstract
418. Sharma SK, Mishra M, Mudgal SK. Efficacy of cloth face mask in prevention of novel coronavirus infection transmission: a systematic review and meta-analysis. J Educ Health Promot. 2020 Jul 28;9:192.Full text Abstract
419. MacIntyre CR, Seale H, Dung TC, et al. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open. 2015 Apr 22;5(4):e006577.Full text Abstract
420. Lazzarino AI, Steptoe A, Hamer M, et al. Covid-19: important potential side effects of wearing face masks that we should bear in mind. BMJ. 2020 May 21;369:m2003.Full text Abstract
421. Bakhit M, Krzyzaniak N, Scott AM, et al. Downsides of face masks and possible mitigation strategies: a systematic review and meta-analysis. BMJ Open. 2021 Feb 22;11(2):e044364.Full text Abstract
422. Sezer H, Çınar D, Kılıç Akça N. The effect of prolonged use of surgical masks during face-to-face teaching on cognitive and physiological parameters of nursing students: a cross-sectional and descriptive study. Nurse Educ Pract. 2023 Sep 14;72:103779. Abstract
423. Bendavid E, Oh C, Bhattacharya J, et al. Assessing mandatory stay-at-home and business closure effects on the spread of COVID-19. Eur J Clin Invest. 2021 Jan 5:e13484.Full text Abstract
424. Burns J, Movsisyan A, Stratil JM, et al. International travel-related control measures to contain the COVID-19 pandemic: a rapid review. Cochrane Database Syst Rev. 2021 Mar 25;3(3):CD013717.Full text Abstract
425. Viswanathan M, Kahwati L, Jahn B, et al. Universal screening for SARS-CoV-2 infection: a rapid review. Cochrane Database Syst Rev. 2020 Sep 15;(9):CD013718.Full text Abstract
426. Nussbaumer-Streit B, Mayr V, Dobrescu AI, et al. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. Cochrane Database Syst Rev. 2020 Sep 15;(9):CD013574.Full text Abstract
427. Ho FK, Celis-Morales CA, Gray SR, et al. Modifiable and non-modifiable risk factors for COVID-19, and comparison to risk factors for influenza and pneumonia: results from a UK Biobank prospective cohort study. BMJ Open. 2020 Nov 19;10(11):e040402.Full text Abstract
428. Sharma S, Di Castelnuovo A, Cerletti C, et al. Diet quality and risk of SARS-CoV-2 infection or COVID-19: a systematic review of observational studies. Adv Nutr. 2023 Nov;14(6):1596-616.Full text Abstract
429. NHS England. COVID-19 symptoms and what to do. Mar 2023 [internet publication].Full text
430. Luo X, Lv M, Zhang X, et al. Clinical manifestations of COVID-19: an overview of 102 systematic reviews with evidence mapping. J Evid Based Med. 2022 Sep;15(3):201-15.Full text Abstract
431. Irfan O, Muttalib F, Tang K, et al. Clinical characteristics, treatment and outcomes of paediatric COVID-19: a systematic review and meta-analysis. Arch Dis Child. 2021 Feb 16;106(5):440-8.Full text Abstract
432. World Health Organization. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19: scientific brief. May 2020 [internet publication].Full text
433. World Health Organization. Diagnostic testing for SARS-CoV-2: interim guidance. Sep 2020 [internet publication].Full text
434. World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection. Oct 2021 [internet publication].Full text
435. Government of the United Kingdom. Order COVID-19 rapid lateral flow tests [internet publication].Full text
436. Centers for Disease Control and Prevention. Overview of testing for SARS-CoV-2. Aug 2024 [internet publication].Full text
437. British Society of Thoracic Imaging. Thoracic imaging in COVID-19 infection: guidance for the reporting radiologist - version 2. Mar 2020 [internet publication].Full text
438. Yu W, Guo Y, Zhang S, et al. Proportion of asymptomatic infection and nonsevere disease caused by SARS-CoV-2 Omicron variant: a systematic review and analysis. J Med Virol. 2022 Dec;94(12):5790-801.Full text Abstract
439. Struyf T, Deeks JJ, Dinnes J, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665.Full text Abstract
440. Marquez C, Kerkhoff AD, Schrom J, et al. COVID-19 symptoms and duration of rapid antigen test positivity at a community testing and surveillance site during pre-Delta, Delta, and Omicron BA.1 periods. JAMA Netw Open. 2022 Oct 3;5(10):e2235844.Full text Abstract
441. ZOE Health Study. What are the symptoms of Omicron? Oct 2022 [internet publication].Full text
442. Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 2022 Apr 23;399(10335):1618-24.Full text Abstract
443. Chen KF, Feng TW, Wu CC, et al. Diagnostic accuracy of clinical signs and symptoms of COVID-19: a systematic review and meta-analysis to investigate the different estimates in a different stage of the pandemic outbreak. J Glob Health. 2023 Jul 14;13:06026.Full text Abstract
444. Matar R, Alrahmani L, Monzer N, et al. Clinical presentation and outcomes of pregnant women with coronavirus disease 2019: a systematic review and meta-analysis. Clin Infect Dis. 2021 Feb 1;72(3):521-33.Full text Abstract
445. Lechien JR, Chetrit A, Chekkoury-Idrissi Y, et al. Parotitis-like symptoms associated with COVID-19, France, March-April 2020. Emerg Infect Dis. 2020 Jun 3;26(9).Full text Abstract
446. Martín Carreras-Presas C, Amaro Sánchez J, López-Sánchez AF, et al. Oral vesiculobullous lesions associated with SARS-CoV-2 infection. Oral Dis. 2021 Apr;27 Suppl 3:710-2.Full text Abstract
447. Wambier CG, Vaño-Galván S, McCoy J, et al. Androgenetic alopecia present in the majority of hospitalized COVID-19 patients: the "Gabrin sign". J Am Acad Dermatol. 2020 May 21;83(2):680-2.Full text Abstract
448. Giannos P, Katsikas Triantafyllidis K, Geropoulos G, et al. Persistent hiccups as an atypical presentation of SARS-CoV-2 infection: a systematic review of case reports. Front Neurol. 2022 Apr 4;13:819624.Full text Abstract
449. Musuuza JS, Watson L, Parmasad V, et al. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: a systematic review and meta-analysis. PLoS One. 2021 May 6;16(5):e0251170.Full text Abstract
450. Cong B, Deng S, Wang X, et al. The role of respiratory co-infection with influenza or respiratory syncytial virus in the clinical severity of COVID-19 patients: a systematic review and meta-analysis. J Glob Health. 2022 Sep 17;12:05040.Full text Abstract
451. Wang Y, Xu J, Wang Y, et al. Prevalence of comorbid tuberculosis amongst COVID-19 patients: a rapid review and meta-analysis. Int J Clin Pract. 2021 Nov;75(11):e14867.Full text Abstract
452. Dadashi M, Dadashi A, Sameni F, et al. SARS-CoV-2 and HIV co-infection; clinical features, diagnosis, and treatment strategies: a systematic review and meta-analysis. Gene Rep. 2022 Jun;27:101624.Full text Abstract
453. Mohamed AH, Eltyeb E, Said B, et al. COVID-19 and malaria co-infection: a systematic review of clinical outcomes in endemic areas. PeerJ. 2024;12:e17160.Full text Abstract
454. Schultz CM, Burke LA, Kent DA. A systematic review and meta-analysis of the initial literature regarding COVID-19 symptoms in children in the United States. J Pediatr Health Care. 2023 Jul-Aug;37(4):425-37.Full text Abstract
455. Mahase E. Covid-19: Children less likely to report fever, persistent cough, or appetite loss, large UK study finds. BMJ. 2021 Feb 10;372:n408.Full text Abstract
456. Karron RA, Hetrich MK, Na YB, et al. Assessment of clinical and virological characteristics of SARS-CoV-2 infection among children aged 0 to 4 years and their household members. JAMA Netw Open. 2022 Aug 1;5(8):e2227348.Full text Abstract
457. Seery V, Raiden S, Russo C, et al. Antibody response against SARS-CoV-2 variants of concern in children infected with pre-Omicron variants: an observational cohort study. EBioMedicine. 2022 Sep;83:104230.Full text Abstract
458. Bahl A, Mielke N, Johnson S, et al. Severe COVID-19 outcomes in pediatrics: an observational cohort analysis comparing Alpha, Delta, and Omicron variants. Lancet Reg Health Am. 2023 Feb;18:100405.Full text Abstract
459. Lorenz N, Treptow A, Schmidt S, et al. Neonatal early-onset infection with SARS-CoV-2 in a newborn presenting with encephalitic symptoms. Pediatr Infect Dis J. 2020 Aug;39(8):e212. Abstract
460. Chacón-Aguilar R, Osorio-Cámara JM, Sanjurjo-Jimenez I, et al. COVID-19: fever syndrome and neurological symptoms in a neonate. An Pediatr (Engl Ed). 2020 Apr 27;92(6):373-4.Full text Abstract
461. Sinelli MT, Paterlini G, Citterio M, et al. Early neonatal SARS-CoV-2 infection manifesting with hypoxemia requiring respiratory support. Pediatrics. 2020 Jul;146(1):e20201121.Full text Abstract
462. Rubens JH, Akindele NP, Tschudy MM, et al. Acute covid-19 and multisystem inflammatory syndrome in children. BMJ. 2021 Mar 1;372:n385.Full text Abstract
463. Alhumaid S, Alabdulqader M, Al Dossary N, et al. Global coinfections with bacteria, fungi, and respiratory viruses in children with SARS-CoV-2: a systematic review and meta-analysis. Trop Med Infect Dis. 2022 Nov 15;7(11):380.Full text Abstract
464. Adams K, Tastad KJ, Huang S, et al. Prevalence of SARS-CoV-2 and influenza coinfection and clinical characteristics among children and adolescents aged <18 years who were hospitalized or died with influenza: United States, 2021-22 influenza season. MMWR Morb Mortal Wkly Rep. 2022 Dec 16;71(50):1589-96.Full text Abstract
465. Vasudevan RS, Bin Thani K, Aljawder D, et al. The stethoscope: a potential vector for COVID-19? Eur Heart J. 2020 Sep 21;41(36):3393-5.Full text Abstract
466. Ikeuchi K, Saito M, Yamamoto S, et al. Relative bradycardia in patients with mild-to-moderate coronavirus disease, Japan. Emerg Infect Dis. 2020 Jul 1;26(10).Full text Abstract
467. O'Driscoll BR, Howard LS, Earis J, et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017 Jun;72(suppl 1):ii1-90.Full text Abstract
468. NHS England. Pulse oximetry to detect early deterioration of patients with COVID-19 in primary and community care settings. Oct 2022 [internet publication].Full text
469. Xie J, Tong Z, Guan X, et al. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med. 2020 May;46(5):837-40.Full text Abstract
470. Shi C, Goodall M, Dumville J, et al. The accuracy of pulse oximetry in measuring oxygen saturation by levels of skin pigmentation: a systematic review and meta-analysis. BMC Med. 2022 Aug 16;20(1):267.Full text Abstract
471. US Food and Drug Administration. Pulse oximeters. Nov 2023 [internet publication].Full text
472. Royal College of Physicians. NEWS2 and deterioration in COVID-19. Jul 2020 [internet publication].Full text
473. Zhang K, Zhang X, Ding W, et al. The prognostic accuracy of national early warning score 2 on predicting clinical deterioration for patients with COVID-19: a systematic review and meta-analysis. Front Med (Lausanne). 2021 Jul 9;8:699880.Full text Abstract
474. Lalueza A, Lora-Tamayo J, de la Calle C, et al. The early use of sepsis scores to predict respiratory failure and mortality in non-ICU patients with COVID-19. Rev Clin Esp (Barc). 2022 May;222(5):293-8.Full text Abstract
475. Li LQ, Huang T, Wang YQ, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020 Jun;92(6):577-83.Full text Abstract
476. Zhu J, Zhong Z, Ji P, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020 Apr;8(2).Full text Abstract
477. Zhang ZL, Hou YL, Li DT, et al. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020 May 23:1-7.Full text Abstract
478. Wu H, Zhu H, Yuan C, et al. Clinical and immune features of hospitalized pediatric patients with coronavirus disease 2019 (COVID-19) in Wuhan, China. JAMA Netw Open. 2020 Jun 1;3(6):e2010895.Full text Abstract
479. Henry BM, Benoit SW, de Oliveira MHS, et al. Laboratory abnormalities in children with mild and severe coronavirus disease 2019 (COVID-19): a pooled analysis and review. Clin Biochem. 2020 Jul;81:1-8.Full text Abstract
480. Kronbichler A, Kresse D, Yoon S, et al. Asymptomatic patients as a source of COVID-19 infections: a systematic review and meta-analysis. Int J Infect Dis. 2020 Sep;98:180-6.Full text Abstract
481. De Rop L, Bos DA, Stegeman I, et al. Accuracy of routine laboratory tests to predict mortality and deterioration to severe or critical COVID-19 in people with SARS-CoV-2. Cochrane Database Syst Rev. 2024 Aug 6;8(8):CD015050.Full text Abstract
482. Peeling RW, Heymann DL, Teo YY, et al. Diagnostics for COVID-19: moving from pandemic response to control. Lancet. 2021 Dec 20;399(10326):757-68.Full text Abstract
483. World Health Organization. Enhancing readiness for Omicron (B.1.1.529): technical brief and priority actions for member states. Jan 2022 [internet publication].Full text
484. Soni A, Herbert C, Filippaios A, et al. Comparison of rapid antigen tests' performance between Delta and Omicron variants of SARS-CoV-2: a secondary analysis from a serial home self-testing study. Ann Intern Med. 2022 Dec;175(12):1685-92.Full text Abstract
485. World Health Organization. WHO policy brief: COVID-19 testing, 14 September 2022. Sep 2022 [internet publication].Full text
486. World Health Organization. Recommendations for national SARS-CoV-2 testing strategies and diagnostic capacities: interim guidance. Jun 2021 [internet publication].Full text
487. UK Health Security Agency. COVID-19: testing from 1 April 2024. Mar 2024 [internet publication].Full text
488. US Food and Drug Administration. SARS-CoV-2 viral mutations: impact on COVID-19 tests. Sep 2023 [internet publication].Full text
489. Centers for Disease Control and Prevention. Interim guidelines for collecting and handling of clinical specimens for COVID-19 testing. Jun 2024 [internet publication].Full text
490. Gupta K, Bellino PM, Charness ME. Adverse effects of nasopharyngeal swabs: three-dimensional printed versus commercial swabs. Infect Control Hosp Epidemiol. 2021 May;42(5):641-2.Full text Abstract
491. Koskinen A, Tolvi M, Jauhiainen M, et al. Complications of COVID-19 nasopharyngeal swab test. JAMA Otolaryngol Head Neck Surg. 2021 Jul 1;147(7):672-4.Full text Abstract
492. Sullivan CB, Schwalje AT, Jensen M, et al. Cerebrospinal fluid leak after nasal swab testing for coronavirus disease 2019. JAMA Otolaryngol Head Neck Surg. 2020 Dec 1;146(12):1179-81.Full text Abstract
493. Knížek Z, Michálek R, Vodicka J, et al. Cribriform plate injury after nasal swab testing for COVID-19. JAMA Otolaryngol Head Neck Surg. 2021 Oct 1;147(10):915-7.Full text Abstract
494. Samargandy SA, Fritz CG, Ahmadian D, et al. Traumatic CSF rhinorrhea associated with COVID-19 testing: a case series and systematic review. Eur Arch Otorhinolaryngol. 2024 Sep 15 [Epub ahead of print]. Abstract
495. Jarrom D, Elston L, Washington J, et al. Effectiveness of tests to detect the presence of SARS-CoV-2 virus, and antibodies to SARS-CoV-2, to inform COVID-19 diagnosis: a rapid systematic review. BMJ Evid Based Med. 2022 Feb;27(1):33-45.Full text Abstract
496. World Health Organization. Use of SARS-CoV-2 antigen-detection rapid diagnostic tests for COVID-19 self-testing. Mar 2022 [internet publication].Full text
497. Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ. 2020 Sep 8;370:m3325.Full text Abstract
498. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020 Jun;26(6):845-8.Full text Abstract
499. Qu J, Wu C, Li X, et al. Profile of immunoglobulin G and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020 Nov 19;71(16):2255-8.Full text Abstract
500. Infectious Diseases Society of America. Infectious Diseases Society of America guidelines on the diagnosis of COVID-19: serologic testing. Feb 2024 [internet publication].Full text
501. World Health Organization. Advice on the use of point-of-care immunodiagnostic tests for COVID-19: scientific brief. Apr 2020 [internet publication].Full text
502. Lisboa Bastos M, Tavaziva G, Abidi SK, et al. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ. 2020 Jul 1;370:m2516.Full text Abstract
503. World Health Organization. WHO information notice for IVD users 2020/05. Jan 2021 [internet publication].Full text
504. Centre for Evidence-Based Medicine; Jefferson T, Heneghan C, Spencer EA, et al. Are you infectious if you have a positive PCR test result for COVID-19? Aug 2020 [internet publication].Full text
505. Jefferson T, Spencer EA, Brassey J, et al. Viral cultures for coronavirus disease 2019 infectivity assessment: a systematic review. Clin Infect Dis. 2021 Dec 6;73(11):e3884-99.Full text Abstract
506. Watson J, Whiting PF, Brush JE. Interpreting a covid-19 test result. BMJ. 2020 May 12;369:m1808.Full text Abstract
507. Bullard J, Dust K, Funk D, et al. Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin Infect Dis. 2020 Dec 17;71(10):2663-6.Full text Abstract
508. La Scola B, Le Bideau M, Andreani J, et al. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur J Clin Microbiol Infect Dis. 2020 Jun;39(6):1059-61.Full text Abstract
509. Tassetto M, Garcia-Knight M, Anglin K, et al. Detection of higher cycle threshold values in culturable SARS-CoV-2 Omicron BA.1 sublineage compared with pre-Omicron variant specimens: San Francisco Bay Area, California, July 2021 - March 2022. MMWR Morb Mortal Wkly Rep. 2022 Sep 9;71(36):1151-4.Full text Abstract
510. Surkova E, Nikolayevskyy V, Drobniewski F. False-positive COVID-19 results: hidden problems and costs. Lancet Respir Med. 2020 Dec;8(12):1167-8.Full text Abstract
511. Floriano I, Silvinato A, Bernardo WM, et al. Accuracy of the polymerase chain reaction (PCR) test in the diagnosis of acute respiratory syndrome due to coronavirus: a systematic review and meta-analysis. Rev Assoc Med Bras (1992). 2020 Jul;66(7):880-8.Full text Abstract
512. Public Health Laboratory Network. PHLN guidance on nucleic acid test result interpretation for SARS-CoV-2. Jul 2022 [internet publication].Full text
513. Australian Government Department of Health. COVID-19 testing in Australia: information for health professionals. May 2024 [internet publication].Full text
514. US Food and Drug Administration. CDC 2019-novel coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel. Mar 2023 [internet publication].Full text
515. Government Office for Science; Scientific Advisory Group for Emergencies. Impact of false-positives and false-negatives in the UK’s COVID-19 RT-PCR testing programme. May 2022 [internet publication].Full text
516. US Food and Drug Administration. Genetic variants of SARS-CoV-2 may lead to false negative results with molecular tests for detection of SARS-CoV-2: letter to clinical laboratory staff and health care providers. Dec 2021 [internet publication].Full text
517. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PLoS One. 2020 Dec 10;15(12):e0242958.Full text Abstract
518. Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020 Aug 18;173(4):262-7.Full text Abstract
519. Tsang NNY, So HC, Ng KY, et al. Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: a systematic review and meta-analysis. Lancet Infect Dis. 2021 Apr 12;21(9):1233-45.Full text Abstract
520. Zhou Y, O'Leary TJ. Relative sensitivity of anterior nares and nasopharyngeal swabs for initial detection of SARS-CoV-2 in ambulatory patients: Rapid review and meta-analysis. PLoS One. 2021 Jul 20;16(7):e0254559.Full text Abstract
521. Fowler T, Chapman D, Futschik ME, et al. Self-swabbing versus assisted swabbing for viral detection by qRT-PCR: the experience from SARS-CoV-2 based on a meta-analysis of six prospectively designed evaluations conducted in a UK setting. Eur J Clin Microbiol Infect Dis. 2024 Aug;43(8):1621-30.Full text Abstract
522. Bastos ML, Perlman-Arrow S, Menzies D, et al. The sensitivity and costs of testing for SARS-CoV-2 infection with saliva versus nasopharyngeal swabs: a systematic review and meta-analysis. Ann Intern Med. 2021 Apr;174(4):501-10.Full text Abstract
523. Butler-Laporte G, Lawandi A, Schiller I, et al. Comparison of saliva and nasopharyngeal swab nucleic acid amplification testing for detection of SARS-CoV-2: a systematic review and meta-analysis. JAMA Intern Med. 2021 Mar 1;181(3):353-60.Full text Abstract
524. Cañete MG, Valenzuela IM, Garcés PC, et al. Saliva sample for the massive screening of SARS-CoV-2 infection: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021 May;131(5):540-8.Full text Abstract
525. Moreira VM, Mascarenhas P, Machado V, et al. Diagnosis of SARS-Cov-2 infection by RT-PCR using specimens other than naso- and oropharyngeal swabs: a systematic review and meta-analysis. Diagnostics (Basel). 2021 Feb 21;11(2):363.Full text Abstract
526. Atieh MA, Guirguis M, Alsabeeha NHM, et al. The diagnostic accuracy of saliva testing for SARS-CoV-2: a systematic review and meta-analysis. Oral Dis. 2022 Nov;28 (Suppl 2):2347-61.Full text Abstract
527. Ibrahimi N, Delaunay-Moisan A, Hill C, et al. Screening for SARS-CoV-2 by RT-PCR: saliva or nasopharyngeal swab? Rapid review and meta-analysis. PLoS One. 2021 Jun 10;16(6):e0253007.Full text Abstract
528. Wagenhäuser I, Knies K, Rauschenberger V, et al. Clinical performance evaluation of SARS-CoV-2 rapid antigen testing in point of care usage in comparison to RT-qPCR. EBioMedicine. 2021 Jun 26;69:103455.Full text Abstract
529. Brümmer LE, Katzenschlager S, Gaeddert M, et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: a living systematic review and meta-analysis. PLoS Med. 2021 Aug;18(8):e1003735.Full text Abstract
530. Dinnes J, Sharma P, Berhane S, et al. Rapid, point‐of‐care antigen tests for diagnosis of SARS‐CoV‐2 infection. Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705.Full text Abstract
531. García-Fiñana M, Hughes DM, Cheyne CP, et al. Performance of the Innova SARS-CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot: population based cohort study. BMJ. 2021 Jul 6;374:n1637.Full text Abstract
532. US Food and Drug Administration. Lab alert: FDA issues safety letter about potential for false positive results with antigen tests for rapid detection of SARS-CoV-2. Jan 2023 [internet publication].Full text
533. US Food and Drug Administration. At-home COVID-19 antigen tests - take steps to reduce your risk of false negative: FDA safety communication. Nov 2022 [internet publication].Full text
534. Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652.Full text Abstract
535. World Health Organization. Use of chest imaging in COVID-19: a rapid advice guide. Jun 2020 [internet publication].Full text
536. Poon LC, Yang H, Kapur A, et al. Global interim guidance on coronavirus disease 2019 (COVID-19) during pregnancy and puerperium from FIGO and allied partners: information for healthcare professionals. Int J Gynaecol Obstet. 2020 Jun;149(3):273-86.Full text Abstract
537. Sadiq Z, Rana S, Mahfoud Z, et al. Systematic review and meta-analysis of chest radiograph (CXR) findings in COVID-19. Clin Imaging. 2021 Jul 27;80:229-38.Full text Abstract
538. Ebrahimzadeh S, Islam N, Dawit H, et al. Thoracic imaging tests for the diagnosis of COVID-19. Cochrane Database Syst Rev. 2022 May 16;5(5):CD013639.Full text Abstract
539. Centre for Evidence-Based Medicine; Park JY, Freer R, Stevens R, et al. The accuracy of chest CT in the diagnosis of COVID-19: an umbrella review. Mar 2021 [internet publication].Full text
540. Tavare AN, Braddy A, Brill S, et al. Managing high clinical suspicion COVID-19 inpatients with negative RT-PCR: a pragmatic and limited role for thoracic CT. Thorax. 2020 Jul;75(7):537-8.Full text Abstract
541. American College of Radiology. ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection. Mar 2020 [internet publication].Full text
542. Nam BD, Hong H, Yoon SH. Diagnostic performance of standardized typical CT findings for COVID-19: a systematic review and meta-analysis. Insights Imaging. 2023 May 24;14(1):96.Full text Abstract
543. Kim H, Hong H, Yoon SH. Diagnostic performance of CT and reverse transcriptase-polymerase chain reaction for coronavirus disease 2019: a meta-analysis. Radiology. 2020 Apr 17:201343.Full text Abstract
544. Lv M, Wang M, Yang N, et al. Chest computed tomography for the diagnosis of patients with coronavirus disease 2019 (COVID-19): a rapid review and meta-analysis. Ann Transl Med. 2020 May;8(10):622.Full text Abstract
545. Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020 Sep;92(9):1518-24.Full text Abstract
546. Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020 Apr;80(4):388-93.Full text Abstract
547. Long C, Xu H, Shen Q, et al. Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020 Mar 25;126:108961.Full text Abstract
548. Chen C, Zhu C, Yan D, et al. The epidemiological and radiographical characteristics of asymptomatic infections with the novel coronavirus (COVID-19): a systematic review and meta-analysis. Int J Infect Dis. 2021 Mar;104:458-64.Full text Abstract
549. Sun P, Qie S, Liu Z, et al. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis. J Med Virol. 2020 Jun;92(6):612-7.Full text Abstract
550. Ojha V, Mani A, Pandey NN, et al. CT in coronavirus disease 2019 (COVID-19): a systematic review of chest CT findings in 4410 adult patients. Eur Radiol. 2020 Nov;30(11):6129-38.Full text Abstract
551. Garg M, Gupta P, Maralakunte M, et al. Diagnostic accuracy of CT and radiographic findings for novel coronavirus 2019 pneumonia: systematic review and meta-analysis. Clin Imaging. 2020 Nov 11;72:75-82.Full text Abstract
552. Hossein H, Ali KM, Hosseini M, et al. Value of chest computed tomography scan in diagnosis of COVID-19: a systematic review and meta-analysis. Clin Transl Imaging. 2020 Oct 12:1-13.Full text Abstract
553. Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin Infect Dis. 2020 Jul 28;71(15):756-61.Full text Abstract
554. Oshay RR, Chen MYC, Fields BKK, et al. COVID-19 in pregnancy: a systematic review of chest CT findings and associated clinical features in 427 patients. Clin Imaging. 2021 Jan 13;75:75-82.Full text Abstract
555. Wang JG, Mo YF, Su YH, et al. Computed tomography features of COVID-19 in children: a systematic review and meta-analysis. Medicine (Baltimore). 2021 Sep 24;100(38):e22571.Full text Abstract
556. Ghodsi A, Bijari M, Alamdaran SA, et al. Chest computed tomography findings of COVID-19 in children younger than 1 year: a systematic review. World J Pediatr. 2021 Jun;17(3):234-41.Full text Abstract
557. Gil-Rodríguez J, Martos-Ruiz M, Benavente-Fernández A, et al. Lung ultrasound score severity cut-off points in COVID-19 pneumonia: a systematic review and validating cohort. Med Clin (Engl Ed). 2023 Jun 23;160(12):531-9.Full text Abstract
558. Gil-Rodríguez J, Pérez de Rojas J, Aranda-Laserna P, et al. Ultrasound findings of lung ultrasonography in COVID-19: a systematic review. Eur J Radiol. 2022 Jan 20;148:110156.Full text Abstract
559. Moro F, Buonsenso D, Moruzzi MC, et al. How to perform lung ultrasound in pregnant women with suspected COVID-19 infection. Ultrasound Obstet Gynecol. 2020 May;55(5):593-8.Full text Abstract
560. Denina M, Scolfaro C, Silvestro E, et al. Lung ultrasound in children with COVID-19. Pediatrics. 2020 Jul;146(1):e20201157.Full text Abstract
561. Caroselli C, Blaivas M, Falzetti S. Diagnostic imaging in newborns, children and adolescents infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): is there a realistic alternative to lung high-resolution computed tomography (HRCT) and chest x-rays? A systematic review of the literature. Ultrasound Med Biol. 2021 Nov;47(11):3034-40.Full text Abstract
562. Pillai K, Hewage S, Harky A. The role of the lung ultrasound in coronavirus disease 2019: a systematic review. J Med Ultrasound. 2020 Oct-Dec;28(4):207-12.Full text Abstract
563. Song G, Qiao W, Wang X, et al. Association of lung ultrasound score with mortality and severity of COVID-19: a meta-analysis and trial sequential analysis. Int J Infect Dis. 2021 Jul;108:603-9.Full text Abstract
564. Islam MA, Kundu S, Alam SS, et al. Prevalence and characteristics of fever in adult and paediatric patients with coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis of 17515 patients. PLoS One. 2021;16(4):e0249788.Full text Abstract
565. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020 Apr 23;382(17):1663-5.Full text Abstract
566. ZOE COVID Symptom Study. What are the most common COVID symptoms? Dec 2022 [internet publication].Full text
567. Song WJ, Hui CKM, Hull JH, et al. Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir Med. 2021 May;9(5):533-44.Full text Abstract
568. Talukder A, Razu SR, Alif SM, et al. Association between symptoms and severity of disease in hospitalised novel coronavirus (COVID-19) patients: a systematic review and meta-analysis. J Multidiscip Healthc. 2022 May 12;15:1101-10.Full text Abstract
569. Cardoso CC, Rossi ÁD, Galliez RM, et al. Olfactory dysfunction in patients with mild COVID-19 during Gamma, Delta, and Omicron waves in Rio de Janeiro, Brazil. JAMA. 2022 Aug 9;328(6):582-3.Full text Abstract
570. Esmaeili M, Abdi F, Shafiee G, et al. Olfactory and gustatory dysfunction in 2019 novel coronavirus: an updated systematic review and meta-analysis. Int J Prev Med. 2021 Dec 14;12:170.Full text Abstract
571. Eliezer M, Hautefort C, Hamel AL, et al. Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020 Jul 1;146(7):674-5.Full text Abstract
572. Jafar A, Lasso A, Shorr R, et al. Olfactory recovery following infection with COVID-19: a systematic review. PLoS One. 2021 Nov 9;16(11):e0259321.Full text Abstract
573. Tan BKJ, Han R, Zhao JJ, et al. Prognosis and persistence of smell and taste dysfunction in patients with covid-19: meta-analysis with parametric cure modelling of recovery curves. BMJ. 2022 Jul 27;378:e069503.Full text Abstract
574. Renaud M, Thibault C, Le Normand F, et al. Clinical outcomes for patients with anosmia 1 year after COVID-19 diagnosis. JAMA Netw Open. 2021 Jun 1;4(6):e2115352.Full text Abstract
575. Boscolo-Rizzo P, Fabbris C, Polesel J, et al. Two-year prevalence and recovery rate of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol Head Neck Surg. 2022 Sep 1;148(9):889-91.Full text Abstract
576. Walker A, Kelly C, Pottinger G, et al. Parosmia: a common consequence of covid-19. BMJ. 2022 Apr 27;377:e069860.Full text Abstract
577. Ferraro S, Tuccori M, Convertino I, et al. Olfactory and gustatory impairments in COVID-19 patients: role in early diagnosis and interferences by concomitant drugs. Br J Clin Pharmacol. 2021 May;87(5):2186-8.Full text Abstract
578. Chaudhry ZS, Nellessen N, Reis C, et al. The development of inflammatory arthritis following SARS-CoV-2 infection: a systematic review of the literature. Fam Pract. 2022 Nov 22;39(6):1116-34. Abstract
579. Korres G, Kitsos DK, Kaski D, et al. The prevalence of dizziness and vertigo in COVID-19 patients: a systematic review. Brain Sci. 2022 Jul 20;12(7):948.Full text Abstract
580. Shao SC, Lai CC, Chen YH, et al. Prevalence, incidence and mortality of delirium in patients with COVID-19: A systematic review and meta-analysis. Age Ageing. 2021 Sep 11;50(5):1445-53.Full text Abstract
581. Pun BT, Badenes R, Heras La Calle G, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021 Mar;9(3):239-50.Full text Abstract
582. Bolia R, Dhanesh Goel A, Badkur M, et al. Gastrointestinal manifestations of pediatric coronavirus disease and their relationship with a severe clinical course: a systematic review and meta-analysis. J Trop Pediatr. 2021 May 17;67(2):fmab051.Full text Abstract
583. Aziz M, Haghbin H, Lee-Smith W, et al. Gastrointestinal predictors of severe COVID-19: systematic review and meta-analysis. Ann Gastroenterol. 2020 Nov-Dec;33(6):615-30.Full text Abstract
584. Zeng W, Qi K, Ye M, et al. Gastrointestinal symptoms are associated with severity of coronavirus disease 2019: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2022 Feb 1;34(2):168-76.Full text Abstract
585. Natarajan A, Zlitni S, Brooks EF, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022 Jun 10;3(6):371-87.Full text Abstract
586. Visconti A, Bataille V, Rossi N, et al. Diagnostic value of cutaneous manifestation of SARS-CoV-2 infection. Br J Dermatol 2021 May;184(5):880-7.Full text
587. Schwartzberg LN, Advani S, Clancy DC, et al. A systematic review of dermatologic manifestations among adult patients with COVID-19 diagnosis. Skin Health Dis. 2021 Jun;1(2):e20.Full text Abstract
588. Dondi A, Sperti G, Gori D, et al. Epidemiology and clinical evolution of non-multisystem inflammatory syndrome (MIS-C) dermatological lesions in pediatric patients affected by SARS-CoV-2 infection: a systematic review of the literature. Eur J Pediatr. 2022 Oct;181(10):3577-93.Full text Abstract
589. Mashayekhi F, Seirafianpour F, Pour Mohammad A, et al. Severe and life-threatening COVID-19-related mucocutaneous eruptions: a systematic review. Int J Clin Pract. 2021 Aug 19:e14720.Full text Abstract
590. Discepolo V, Catzola A, Pierri L, et al. Bilateral chilblain-like lesions of the toes characterized by microvascular remodeling in adolescents during the COVID-19 pandemic. JAMA Netw Open. 2021 Jun 1;4(6):e2111369.Full text Abstract
591. Gehlhausen JR, Little AJ, Ko CJ, et al. Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proc Natl Acad Sci U S A. 2022 Mar 1;119(9):e2122090119.Full text Abstract
593. Inomata T, Kitazawa K, Kuno T, et al. Clinical and prodromal ocular symptoms in coronavirus disease: a systematic review and meta-analysis. Invest Ophthalmol Vis Sci. 2020 Aug 3;61(10):29.Full text Abstract
594. Sen S, Kannan NB, Kumar J, et al. Retinal manifestations in patients with SARS-CoV-2 infection and pathogenetic implications: a systematic review. Int Ophthalmol. 2022 Jan;42(1):323-36.Full text Abstract
595. Ullah I, Sohail A, Shah MUFA, et al. Central retinal vein occlusion in patients with COVID-19 infection: a systematic review. Ann Med Surg (Lond). 2021 Oct 8:102898.Full text Abstract
596. Modjtahedi BS, Do D, Luong TQ, et al. Changes in the incidence of retinal vascular occlusions after COVID-19 diagnosis. JAMA Ophthalmol. 2022 May 1;140(5):523-7.Full text Abstract
597. Zhong Y, Wang K, Zhu Y, et al. Ocular manifestations in COVID-19 patients: a systematic review and meta-analysis. Travel Med Infect Dis. 2021 Nov-Dec;44:102191.Full text Abstract
598. Casey K, Iteen A, Nicolini R, et al. COVID-19 pneumonia with hemoptysis: acute segmental pulmonary emboli associated with novel coronavirus infection. Am J Emerg Med. 2020 Jul;38(7):1544.Full text Abstract
599. Almufarrij I, Munro KJ. One year on: an updated systematic review of SARS-CoV-2, COVID-19 and audio-vestibular symptoms. Int J Audiol. 2021 Mar 22:1-11.Full text Abstract
600. Meng X, Wang J, Sun J, et al. COVID-19 and sudden sensorineural hearing loss: a systematic review. Front Neurol. 2022 Apr 28;13:883749.Full text Abstract
601. Erbaş GS, Botsali A, Erden N, et al. COVID-19-related oral mucosa lesions among confirmed SARS-CoV-2 patients: a systematic review. Int J Dermatol. 2022 Jan;61(1):20-32.Full text Abstract
602. Holcomb ZE, Hussain S, Huang JT, et al. Reactive infectious mucocutaneous eruption associated with SARS-CoV-2 infection. JAMA Dermatol. 2021 May 1;157(5):603-5.Full text Abstract
603. Bhujel N, Zaheer K, Singh RP. Oral mucosal lesions in patients with COVID-19: a systematic review. Br J Oral Maxillofac Surg. 2021 Nov;59(9):1024-30.Full text Abstract
604. Infectious Diseases Society of America. Infectious Diseases Society of America guidelines on the diagnosis of COVID-19: molecular diagnostic testing. Sep 2023 [internet publication].Full text
605. Infectious Diseases Society of America. Infectious Diseases Society of America guidelines on the diagnosis of COVID-19: antigen testing. Dec 2022 [internet publication].Full text
606. Danwang C, Endomba FT, Nkeck JR, et al. A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19). Biomark Res. 2020 Aug 31;8:37.Full text Abstract
607. Zuin M, Rigatelli G, Quadretti L, et al. Prognostic role of anemia in COVID-19 patients: a meta-analysis. Infect Dis Rep. 2021 Oct 31;13(4):930-7.Full text Abstract
608. Foy BH, Carlson JCT, Reinertsen E, et al. Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection. JAMA Netw Open. 2020 Sep 1;3(9):e2022058.Full text Abstract
609. Huang W, Berube J, McNamara M, et al. Lymphocyte subset counts in COVID-19 patients: a meta-analysis. Cytometry A. 2020 Aug;97(8):772-6.Full text Abstract
610. Chen W, Li Z, Yang B, et al. Delayed-phase thrombocytopenia in patients of coronavirus disease 2019 (COVID-19). Br J Haematol. 2020 Jul;190(2):179-84.Full text Abstract
611. Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020 Jun 1;3(6):e2011122.Full text Abstract
612. Alemzadeh E, Alemzadeh E, Ziaee M, et al. The effect of low serum calcium level on the severity and mortality of Covid patients: a systematic review and meta-analysis. Immun Inflamm Dis. 2021 Dec;9(4):1219-28.Full text Abstract
613. Akbar MR, Pranata R, Wibowo A, et al. The prognostic value of hyponatremia for predicting poor outcome in patients with COVID-19: a systematic review and meta-analysis. Front Med (Lausanne). 2021 Jun 14;8:666949.Full text Abstract
614. Lazarus G, Audrey J, Kharisma Wangsaputra V, et al. High admission blood glucose independently predicts poor prognosis in COVID-19 patients: a systematic review and dose-response meta-analysis. Diabetes Res Clin Pract. 2020 Dec 9:108561.Full text Abstract
615. Handayani DR, Juliastuti H, Nawangsih EN, et al. Prognostic value of fasting hyperglycemia in patients with COVID-19: diagnostic test accuracy meta-analysis. Obes Med. 2021 Apr 4:100333.Full text Abstract
616. Klonoff DC, Messler JC, Umpierrez GE, et al. Association between achieving inpatient glycemic control and clinical outcomes in hospitalized patients with COVID-19: a multicenter, retrospective hospital-based analysis. Diabetes Care. 2021 Feb;44(2):578-85.Full text Abstract
617. Nugroho J, Wardhana A, Mulia EP, et al. Elevated fibrinogen and fibrin degradation product are associated with poor outcome in COVID-19 patients: a meta-analysis. Clin Hemorheol Microcirc. 2021;77(2):221-31.Full text Abstract
618. Shah S, Shah K, Patel SB, et al. Elevated D-dimer levels are associated with increased risk of mortality in COVID-19: a systematic review and meta-analysis. Cardiol Rev. 2020 Nov/Dec;28(6):295-302. Abstract
619. Leonard-Lorant I, Delabranche X, Severac F, et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology. 2020 Apr 23:201561.Full text Abstract
620. Mucha SR, Dugar S, McCrae K, et al. Coagulopathy in COVID-19. Cleve Clin J Med. 2020 Jul 31;87(8):461-8.Full text Abstract
621. Zinellu A, Paliogiannis P, Carru C, et al. INR and COVID-19 severity and mortality: a systematic review with meta-analysis and meta-regression. Adv Med Sci. 2021 Jul 21;66(2):372-80.Full text Abstract
622. Rostami M, Mansouritorghabeh H, Parsa-Kondelaji M. High levels of Von Willebrand factor markers in COVID-19: a systematic review and meta-analysis. Clin Exp Med. 2021 Nov 6;1-11.Full text Abstract
623. Wungu CDK, Khaerunnisa S, Putri EAC, et al. Meta-analysis of cardiac markers for predictive factors on severity and mortality of COVID-19. Int J Infect Dis. 2021 Mar 9;105:551-9.Full text Abstract
624. Yitbarek GY, Walle Ayehu G, Asnakew S, et al. The role of C-reactive protein in predicting the severity of COVID-19 disease: a systematic review. SAGE Open Med. 2021 Oct 11;9:20503121211050755.Full text Abstract
625. Smilowitz NR, Kunichoff D, Garshick M, et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021 Jun 14;42(23):2270-9.Full text Abstract
626. Kumar A, Karn E, Trivedi K, et al. Procalcitonin as a predictive marker in COVID-19: a systematic review and meta-analysis. PLoS One. 2022 Sep 9;17(9):e0272840.Full text Abstract
627. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020 May;55(5):1169-74.Full text Abstract
628. Cheng L, Li H, Li L, et al. Ferritin in the coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Clin Lab Anal. 2020 Oct 19:e23618.Full text Abstract
629. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-4.Full text Abstract
630. Kumar J, Meena J, Yadav A, et al. Radiological findings of COVID-19 in children: a systematic review and meta-analysis. J Trop Pediatr. 2021 Jul 2;67(3):fmaa045.Full text Abstract
631. Jari R, Alfuraih AM, McLaughlan JR. The diagnostic performance of lung ultrasound for detecting COVID-19 in emergency departments: a systematic review and meta-analysis. J Clin Ultrasound. 2022 Jun;50(5):618-27.Full text Abstract
632. Centre for Evidence-Based Medicine; Heneghan C, Pluddemann A, Mahtani KR. Differentiating viral from bacterial pneumonia. Apr 2020 [internet publication].Full text
633. Hani C, Trieu NH, Saab I, et al. COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagn Interv Imaging. 2020 May;101(5):263-8.Full text Abstract
634. Pormohammad A, Ghorbani S, Khatami A, et al. Comparison of influenza type A and B with COVID-19: a global systematic review and meta-analysis on clinical, laboratory and radiographic findings. Rev Med Virol. 2020 Oct 9:e2179.Full text Abstract
635. Czubak J, Stolarczyk K, Orzeł A, et al. Comparison of the clinical differences between COVID-19, SARS, influenza, and the common cold: a systematic literature review. Adv Clin Exp Med. 2021 Jan;30(1):109-14.Full text Abstract
636. Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J, et al. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicenter PCR-based case-control study. Eur J Neurol. 2020 Sep;27(9):1738-41.Full text Abstract
637. Solomon DA, Sherman AC, Kanjilal S. Influenza in the COVID-19 era. JAMA. 2020 Oct 6;324(13):1342-3.Full text Abstract
638. Song X, Delaney M, Shah RK, et al. Comparison of clinical features of COVID-19 vs seasonal influenza A and B in US children. JAMA Netw Open. 2020 Sep 1;3(9):e2020495.Full text Abstract
639. Guan Z, Chen C, Li Y, et al. Impact of coinfection with SARS-CoV-2 and influenza on disease severity: a systematic review and meta-analysis. Front Public Health. 2021 Dec 10;9:773130.Full text Abstract
640. Dao TL, Hoang VT, Colson P, et al. Co-infection of SARS-CoV-2 and influenza viruses: a systematic review and meta-analysis. J Clin Virol Plus. 2021 Sep;1(3):100036.Full text Abstract
641. Liu M, Zeng W, Wen Y, et al. COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia. Eur Radiol. 2020 Oct;30(10):5463-9.Full text Abstract
642. Yin Z, Kang Z, Yang D, et al. A comparison of clinical and chest CT findings in patients with influenza A (H1N1) virus infection and coronavirus disease (COVID-19). AJR Am J Roentgenol. 2020 May 26:1-7.Full text Abstract
643. Luo Y, Yuan X, Xue Y, et al. Using the diagnostic model based on routine laboratory tests to distinguish patients infected with SARS-CoV-2 from those infected with influenza virus. Int J Infect Dis. 2020 May 1;95:436-40.Full text Abstract
644. Zarei F, Reza J, Sefidbakht S, et al. Aspiration pneumonia or COVID-19 infection: a diagnostic challenge. Acad Radiol. 2020 Jul;27(7):1046.Full text Abstract
645. Kaya T, Dilek A, Ozaras R, et al. COVID 19 and febrile neutropenia: case report and systematic review. Travel Med Infect Dis. 2022 Mar 7;47:102305.Full text Abstract
646. Fistera D, Härtl A, Pabst D, et al. What about the others: differential diagnosis of COVID-19 in a German emergency department. BMC Infect Dis. 2021 Sep 17;21(1):969.Full text Abstract
647. World Health Organization. Contact tracing and quarantine in the context of COVID-19: interim guidance, 6 July 2022. Jul 2022 [internet publication].Full text
648. UK Health Security Agency. People with symptoms of a respiratory infection including COVID-19. Jun 2022 [internet publication].Full text
649. Centers for Disease Control and Prevention. CDC streamlines COVID-19 guidance to help the public better protect themselves and understand their risk. Aug 2022 [internet publication].Full text
650. Kwon KT, Ko JH, Shin H, et al. Drive-through screening center for COVID-19: a safe and efficient screening system against massive community outbreak. J Korean Med Sci. 2020 Mar 23;35(11):e123.Full text Abstract
651. Medicines and Healthcare products Regulatory Agency. Don’t rely on temperature screening products for detection of coronavirus (COVID-19), says MHRA. Jul 2020 [internet publication].Full text
652. Aggarwal N, Garg M, Dwarakanathan V, et al. Diagnostic accuracy of non-contact infrared thermometers and thermal scanners: a systematic review and meta-analysis. J Travel Med. 2020 Dec 23;27(8):taaa193.Full text Abstract
653. Khan DS, Saultry MB, Adams DS, et al. Comparative accuracy testing of non-contact infrared thermometers and temporal artery thermometers in an adult hospital setting. Am J Infect Control. 2021 May;49(5):597-602.Full text Abstract
654. Centers for Disease Control and Prevention. Infection control guidance: SARS-CoV-2. Jun 2024 [internet publication].Full text
655. American Academy of Pediatrics. COVID-19 testing guidance. Dec 2022 [internet publication].Full text
656. Infectious Diseases Society of America. Infectious Diseases Society of America guidelines on infection prevention for healthcare personnel caring for patients with suspected or known COVID-19. Nov 2021 [internet publication].Full text
657. UK Health Security Agency. Coronavirus (COVID-19): guidance. Feb 2024 [internet publication].Full text
658. European Society of Clinical Microbiology and Infectious Diseases. ESCMID COVID-19 guidelines. Jul 2024 [internet publication].Full text
659. World Health Organization. Home care for patients with suspected or confirmed COVID-19 and management of their contacts: interim guidance. Aug 2020 [internet publication].Full text
660. Suter F, Consolaro E, Pedroni S, et al. A simple, home-therapy algorithm to prevent hospitalisation for COVID-19 patients: a retrospective observational matched-cohort study. EClinicalMedicine. 2021 Jun 9:100941.Full text Abstract
661. Crotty BH, Dong Y, Laud P, et al. Hospitalization outcomes among patients with COVID-19 undergoing remote monitoring. JAMA Netw Open. 2022 Jul 1;5(7):e2221050.Full text Abstract
662. Whitcroft KL, Hummel T. Olfactory dysfunction in COVID-19: diagnosis and management. JAMA. 2020 Jun 23;323(24):2512-4.Full text Abstract
663. Nag AK, Saltagi AK, Saltagi MZ, et al. Management of post-infectious anosmia and hyposmia: a systematic review. Ann Otol Rhinol Laryngol. 2022 Aug 12:34894221118186. Abstract
664. Webster KE, O'Byrne L, MacKeith S, et al. Interventions for the prevention of persistent post-COVID-19 olfactory dysfunction. Cochrane Database Syst Rev. 2022 Sep 5;9(9):CD013877.Full text Abstract
665. O'Byrne L, Webster KE, MacKeith S, et al. Interventions for the treatment of persistent post-COVID-19 olfactory dysfunction. Cochrane Database Syst Rev. 2022 Sep 5;9(9):CD013876.Full text Abstract
666. Asvapoositkul V, Samuthpongtorn J, Aeumjaturapat S, et al. Therapeutic options of post-COVID-19 related olfactory dysfunction: a systematic review and meta-analysis. Rhinology. 2023 Feb 1;61(1):2-11.Full text Abstract
667. Agarwal A, Rochwerg B, Lamontagne F, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020 Sep 4;370:m3379.Full text Abstract
668. Agarwal A, Hunt BJ, Stegemann M, et al. Update to living WHO guideline on drugs for covid-19. BMJ. 2023 Nov 9;383:2622. Abstract
669. National Institute for Health and Care Excellence. Nirmatrelvir plus ritonavir, sotrovimab and tocilizumab for treating COVID-19. Mar 2024 [internet publication].Full text
670. Cruciani M, Pati I, Masiello F, et al. SARS-CoV-2 infection rebound among patients receiving antiviral agents, convalescent plasma, or no treatment: a systematic review with meta-analysis. Blood Transfus. 2024 May 27 [Epub ahead of print].Full text Abstract
671. Tamura TJ, Choudhary MC, Deo R, et al. Emerging SARS-CoV-2 resistance after antiviral treatment. JAMA Netw Open. 2024 Sep 3;7(9):e2435431.Full text Abstract
672. Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med. 2022 Apr 14;386(15):1397-408.Full text Abstract
673. Hammond J, Fountaine RJ, Yunis C, et al. Nirmatrelvir for vaccinated or unvaccinated adult outpatients with Covid-19. N Engl J Med. 2024 Apr 4;390(13):1186-95.Full text Abstract
674. Tian H, Yang C, Song T, et al. Efficacy and safety of paxlovid (nirmatrelvir/ritonavir) in the treatment of COVID-19: an updated meta-analysis and trial sequential analysis. Rev Med Virol. 2023 Sep;33(5):e2473. Abstract
675. Li H, Xiang H, He B, et al. Nirmatrelvir plus ritonavir remains effective in vaccinated patients at risk of progression with COVID-19: a systematic review and meta-analysis. J Glob Health. 2023 Jul 21;13:06032.Full text Abstract
676. Zhu CT, Yin JY, Chen XH, et al. Appraisal of evidence reliability and applicability of Paxlovid as treatment for SARS-COV-2 infection: a systematic review. Rev Med Virol. 2023 Aug 14:e2476. Abstract
677. Reis S, Metzendorf MI, Kuehn R, et al. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Cochrane Database Syst Rev. 2023 Nov 30;11(11):CD015395.Full text Abstract
678. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med. 2022 Feb 10;386(6):509-20.Full text Abstract
679. Butler CC, Hobbs FDR, Gbinigie OA, et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial. Lancet. 2023 Jan 28;401(10373):281-93.Full text Abstract
680. Tian F, Feng Q, Chen Z. Efficacy and safety of molnupiravir treatment for COVID-19: a systematic review and meta-analysis of randomized controlled trials. Int J Antimicrob Agents. 2023 Aug;62(2):106870.Full text Abstract
681. Malin JJ, Weibel S, Gruell H, et al. Efficacy and safety of molnupiravir for the treatment of SARS-CoV-2 infection: a systematic review and meta-analysis. J Antimicrob Chemother. 2023 Jul 5;78(7):1586-98.Full text Abstract
682. Benaicha K, Khenhrani RR, Veer M, et al. Efficacy of molnupiravir for the treatment of mild or moderate COVID-19 in adults: a meta-analysis. Cureus. 2023 May;15(5):e38586.Full text Abstract
683. Sun M, Lai H, Huang J, et al. Molnupiravir for the treatment of non-severe COVID-19: a systematic review and meta-analysis of 14 randomized trials with 34 570 patients. J Antimicrob Chemother. 2023 Sep 5;78(9):2131-9.Full text Abstract
684. Sanderson T, Hisner R, Donovan-Banfield I, et al. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature. 2023 Nov;623(7987):594-600. Abstract
685. Gottlieb RL, Vaca CE, Paredes R, et al. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med. 2022 Jan 27;386(4):305-15.Full text Abstract
686. Amani B, Akbarzadeh A, Amani B, et al. Comparative efficacy and safety of nirmatrelvir/ritonavir and molnupiravir for COVID-19: a systematic review and meta-analysis. J Med Virol. 2023 Jun;95(6):e28889. Abstract
687. National Institute for Health and Care Excellence. Remdesivir and tixagevimab plus cilgavimab for treating COVID-19. May 2024 [internet publication].Full text
688. Hirsch C, Park YS, Piechotta V, et al. SARS‐CoV‐2‐neutralising monoclonal antibodies to prevent COVID‐19. Cochrane Database Syst Rev. 2022 Jun 17;6(6):CD014945.Full text Abstract
689. Hernandez AV, Piscoya A, Pasupuleti V, et al. Beneficial and harmful effects of monoclonal antibodies for the treatment and prophylaxis of COVID-19: systematic review and meta-analysis. Am J Med. 2022 Jul 23;135(11):1349-61.Full text Abstract
690. Barnes GD, Burnett A, Allen A, et al. Thromboembolic prevention and anticoagulant therapy during the COVID-19 pandemic: updated clinical guidance from the Anticoagulation Forum. J Thromb Thrombolysis. 2022 Aug;54(2):197-210.Full text Abstract
691. Santos BC, Flumignan RL, Civile VT, et al. Prophylactic anticoagulants for non-hospitalised people with COVID-19. Cochrane Database Syst Rev. 2023 Aug 16;8(8):CD015102.Full text Abstract
692. Fischer AL, Messer S, Riera R, et al. Antiplatelet agents for the treatment of adults with COVID-19. Cochrane Database Syst Rev. 2023 Jul 25;7(7):CD015078.Full text Abstract
693. Department of Health and Social Care. Higher-risk patients eligible for COVID-19 treatments: independent advisory group report. Sep 2023 [internet publication].Full text
694. Alimohamadi Y, Yekta EM, Sepandi M, et al. Hospital length of stay for COVID-19 patients: a systematic review and meta-analysis. Multidiscip Respir Med. 2022 Jan 12;17(1):856.Full text Abstract
695. British Geriatrics Society; Boreskie K, Conroy S. COVID-19: frailty scores and outcomes in older people. Jun 2021 [internet publication].Full text
696. Rottler M, Ocskay K, Sipos Z, et al. Clinical Frailty Scale (CFS) indicated frailty is associated with increased in-hospital and 30-day mortality in COVID-19 patients: a systematic review and meta-analysis. Ann Intensive Care. 2022 Feb 20;12(1):17.Full text Abstract
697. Pranata R, Henrina J, Lim MA, et al. Clinical frailty scale and mortality in COVID-19: a systematic review and dose-response meta-analysis. Arch Gerontol Geriatr. 2021 Mar-Apr;93:104324.Full text Abstract
698. Subramaniam A, Shekar K, Afroz A, et al. Frailty and mortality associations in patients with COVID-19: a systematic review and meta-analysis. Intern Med J. 2022 May;52(5):724-39.Full text Abstract
699. Cosco TD, Best J, Davis D, et al. What is the relationship between validated frailty scores and mortality for adults with COVID-19 in acute hospital care? A systematic review. Age Ageing. 2021 May 5;50(3):608-16.Full text Abstract
700. Centre for Evidence-Based Medicine; Allsop M, Ziegler L, Fu Y, et al. Is oxygen an effective treatment option to alleviate the symptoms of breathlessness for patients dying with COVID-19 and what are the potential harms? May 2020 [internet publication].Full text
701. Alhazzani W, Evans L, Alshamsi F, et al. Surviving Sepsis Campaign guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: first update. Crit Care Med. 2021 Mar 1;49(3):e219-34.Full text Abstract
702. Weatherald J, Parhar KKS, Al Duhailib Z, et al. Efficacy of awake prone positioning in patients with covid-19 related hypoxemic respiratory failure: systematic review and meta-analysis of randomized trials. BMJ. 2022 Dec 7;379:e071966.Full text Abstract
703. Mojoli F, Mongodi S, Orlando A, et al. Our recommendations for acute management of COVID-19. Crit Care. 2020 May 8;24(1):207.Full text Abstract
704. Centre for Evidence-Based Medicine; Jones L, Candy B, Roberts N, et al. How can healthcare workers adapt non-pharmacological treatment – whilst maintaining safety – when treating people with COVID-19 and delirium? May 2020 [internet publication].Full text
705. UK Health Security Agency. Mouth care for hospitalised patients with confirmed or suspected COVID-19. Aug 2020 [internet publication].Full text
706. Zeng J, Liu F, Wang Y, et al. The effect of previous oral anticoagulant use on clinical outcomes in COVID-19: a systematic review and meta-analysis. Am J Emerg Med. 2022 Feb 3;54:107-10.Full text Abstract
707. Flumignan RL, Civile VT, Tinôco JDS, et al. Anticoagulants for people hospitalised with COVID-19. Cochrane Database Syst Rev. 2022 Mar 4;(3):CD013739.Full text Abstract
708. Moonla C, Sosothikul D, Chiasakul T, et al. Anticoagulation and in-hospital mortality from coronavirus disease 2019: a systematic review and meta-analysis. Clin Appl Thromb Hemost. 2021 Jan-Dec;27:10760296211008999.Full text Abstract
709. American Society Of Hematology. COVID-19 and VTE/anticoagulation: frequently asked questions. Feb 2022 [internet publication].Full text
710. Alsagaff MY, Mulia EPB, Maghfirah I, et al. Low molecular weight heparin is associated with better outcomes than unfractionated heparin for thromboprophylaxis in hospitalized COVID-19 patients: a meta-analysis. Eur Heart J Qual Care Clin Outcomes. 2022 Nov 17;8(8):909-18.Full text Abstract
711. Amin L, Qayyum K, Uzair M, et al. Factor Xa inhibitors versus low-molecular-weight heparin for preventing coagulopathy following COVID-19: a systematic review and meta-analysis of randomized controlled trials. Ann Med Surg (Lond). 2024 Jul;86(7):4075-82.Full text Abstract
712. Dai MF, Xin WX, Kong S, et al. Effectiveness and safety of extended thromboprophylaxis in post-discharge patients with COVID-19: a systematic review and meta-analysis. Thromb Res. 2023 Jan;221:105-12.Full text Abstract
713. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021 Apr;27(4):520-31.Full text Abstract
714. Wagner C, Griesel M, Mikolajewska A, et al. Systemic corticosteroids for the treatment of COVID‐19: equity‐related analyses and update on evidence. Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD014963.Full text Abstract
715. Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ. 2020 Jul 30;370:m2980.Full text Abstract
716. Siemieniuk RA, Bartoszko JJ, Ge L, et al. Update to living systematic review on drug treatments for covid-19. BMJ. 2022 Jul 13;378:o1717.Full text Abstract
717. Pitre T, Su J, Mah J, et al. Higher versus lower dose corticosteroids for severe to critical COVID-19: a systematic review and dose-response meta-analysis. Ann Am Thorac Soc. 2023 Apr;20(4):596-604.Full text Abstract
718. RECOVERY Collaborative Group. Higher dose corticosteroids in patients admitted to hospital with COVID-19 who are hypoxic but not requiring ventilatory support (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2023 May 6;401(10387):1499-507.Full text Abstract
719. Ssentongo P, Yu N, Voleti N, et al. Optimal duration of systemic corticosteroids in coronavirus disease 2019 treatment: a systematic review and meta-analysis. Open Forum Infect Dis. 2023 Mar;10(3):ofad105.Full text Abstract
720. Grundeis F, Ansems K, Dahms K, et al. Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev. 2023 Jan 25;1(1):CD014962.Full text Abstract
721. Nevalainen OPO, Horstia S, Laakkonen S, et al. Effect of remdesivir post hospitalization for COVID-19 infection from the randomized SOLIDARITY Finland trial. Nat Commun. 2022 Oct 18;13(1):6152.Full text Abstract
722. Wan EYF, Yan VKC, Mok AHY, et al. Effectiveness of molnupiravir and nirmatrelvir-ritonavir in hospitalized patients with COVID-19: a target trial emulation study. Ann Intern Med. 2023 Apr;176(4):505-14.Full text Abstract
723. Ghosn L, Assi R, Evrenoglou T, et al. Interleukin-6 blocking agents for treating COVID-19: a living systematic review. Cochrane Database Syst Rev. 2023 Jun 1;6(6):CD013881.Full text Abstract
724. Zeraatkar D, Cusano E, Martínez JPD, et al. Use of tocilizumab and sarilumab alone or in combination with corticosteroids for covid-19: systematic review and network meta-analysis. BMJ Med. 2022 Feb 28;1(1):e000036.Full text Abstract
725. Kramer A, Prinz C, Fichtner F, et al. Janus kinase inhibitors for the treatment of COVID-19. Cochrane Database Syst Rev. 2022 Jun 13;6(6):CD015209.Full text Abstract
726. Heath L, Carey M, Lowney AC, et al. Pharmacological strategies used to manage symptoms of patients dying of COVID-19: a rapid systematic review. Palliat Med. 2021 Jun;35(6):1099-107.Full text Abstract
727. Gebremeskel GG, Tadesse DB, Haile TG. Mortality and morbidity in critically ill COVID-19 patients: a systematic review and meta-analysis. J Infect Public Health. 2024 Oct;17(10):102533.Full text Abstract
728. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ. 2020 May 29;369:m1996.Full text Abstract
729. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle region: case series. N Engl J Med. 2020 May 21;382(21):2012-22.Full text Abstract
730. Schmid B, Griesel M, Fischer AL, et al. Awake prone positioning, high-flow nasal oxygen and non-invasive ventilation as non-invasive respiratory strategies in COVID-19 acute respiratory failure: a systematic review and meta-analysis. J Clin Med. 2022 Jan 13;11(2):391.Full text Abstract
731. Weerakkody S, Arina P, Glenister J, et al. Non-invasive respiratory support in the management of acute COVID-19 pneumonia: considerations for clinical practice and priorities for research. Lancet Respir Med. 2022 Feb;10(2):199-213.Full text Abstract
732. Schünemann HJ, Khabsa J, Solo K, et al. Ventilation techniques and risk for transmission of coronavirus disease, including COVID-19. Ann Intern Med. 2020 Aug 4;173(3):204-16.Full text Abstract
733. Ute Muti-Schüenemann GE, Szczeklik W, Solo K, et al. Update alert 3: ventilation techniques and risk for transmission of coronavirus disease, including COVID-19. Ann Intern Med. 2022 Jan;175(1):W6-7.Full text Abstract
734. Glenardi G, Chriestya F, Oetoro BJ, et al. Comparison of high-flow nasal oxygen therapy and noninvasive ventilation in COVID-19 patients: a systematic review and meta-analysis. Acute Crit Care. 2022 Feb;37(1):71-83.Full text Abstract
735. Beran A, Srour O, Malhas SE, et al. High-flow nasal cannula oxygen versus non-invasive ventilation in subjects with COVID-19: a systematic review and meta-analysis of comparative studies. Respir Care. 2022 Sep;67(9):1177-89.Full text Abstract
736. Li Y, Li C, Chang W, et al. High-flow nasal cannula reduces intubation rate in patients with COVID-19 with acute respiratory failure: a meta-analysis and systematic review. BMJ Open. 2023 Mar 30;13(3):e067879.Full text Abstract
737. Perkins GD, Ji C, Connolly BA, et al. Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19: the RECOVERY-RS randomized clinical trial. JAMA. 2022 Feb 8;327(6):546-58.Full text Abstract
738. Arabi YM, Aldekhyl S, Al Qahtani S, et al. Effect of helmet noninvasive ventilation vs usual respiratory support on mortality among patients with acute hypoxemic respiratory failure due to COVID-19: the HELMET-COVID randomized clinical trial. JAMA. 2022 Sep 20;328(11):1063-72.Full text Abstract
739. Frat JP, Quenot JP, Badie J, et al. Effect of high-flow nasal cannula oxygen vs standard oxygen therapy on mortality in patients with respiratory failure due to COVID-19: the SOHO-COVID randomized clinical trial. JAMA. 2022 Sep 27;328(12):1212-22.Full text Abstract
740. Ospina-Tascón GA, Calderón-Tapia LE, García AF, et al. Effect of high-flow oxygen therapy vs conventional oxygen therapy on invasive mechanical ventilation and clinical recovery in patients with severe COVID-19: a randomized clinical trial. JAMA. 2021 Dec 7;326(21):2161-71. Abstract
741. Winslow RL, Zhou J, Windle EF, et al. SARS-CoV-2 environmental contamination from hospitalised patients with COVID-19 receiving aerosol-generating procedures. Thorax. 2022 Mar;77(3):259-67.Full text Abstract
742. Li J, Fink JB, Ehrmann S. High-flow nasal cannula for COVID-19 patients: low risk of bio-aerosol dispersion. Eur Respir J. 2020 May 14;55(5):2000892.Full text Abstract
743. Zhang MX, Lilien TA, van Etten-Jamaludin FS, et al. Generation of aerosols by noninvasive respiratory support modalities: a systematic review and meta-analysis. JAMA Netw Open. 2023 Oct 2;6(10):e2337258.Full text Abstract
744. Elsayed HH, Hassaballa AS, Ahmed TA, et al. Variation in outcome of invasive mechanical ventilation between different countries for patients with severe COVID-19: a systematic review and meta-analysis. PLoS One. 2021;16(6):e0252760.Full text Abstract
745. Xourgia E, Katsaros DE, Xixi NA, et al. Mortality of intubated patients with COVID-19 during first and subsequent waves: a meta-analysis involving 363,660 patients from 43 countries. Expert Rev Respir Med. 2022 Oct;16(10):1101-8. Abstract
746. Xixi NA, Kremmydas P, Xourgia E, et al. Association between timing of intubation and clinical outcomes of critically ill patients: a meta-analysis. J Crit Care. 2022 May 16;71:154062. Abstract
747. Lee HJ, Kim J, Choi M, et al. Early intubation and clinical outcomes in patients with severe COVID-19: a systematic review and meta-analysis. Eur J Med Res. 2022 Nov 3;27(1):226.Full text Abstract
748. Gattinoni L, Coppola S, Cressoni M, et al. Covid-19 does not lead to a "typical" acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020 May 15;201(10):1299-300.Full text Abstract
749. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020 Apr 16;24(1):154.Full text Abstract
750. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Jun;46(6):1099-102.Full text Abstract
751. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020 Jun 9;323(22):2329-30.Full text Abstract
752. Rello J, Storti E, Belliato M, et al. Clinical phenotypes of SARS-CoV-2: implications for clinicians and researchers. Eur Respir J. 2020 May 21;55(5):2001028.Full text Abstract
753. Tsolaki V, Siempos I, Magira E, et al. PEEP levels in COVID-19 pneumonia. Crit Care. 2020 Jun 6;24(1):303.Full text Abstract
754. Bos LD, Paulus F, Vlaar APJ, et al. Subphenotyping acute respiratory distress syndrome in patients with COVID-19: consequences for ventilator management. Ann Am Thorac Soc. 2020 Sep;17(9):1161-3.Full text Abstract
755. Jain A, Doyle DJ. Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Med. 2020 May 18;:1-2.Full text Abstract
756. Reddy MP, Subramaniam A, Chua C, et al. Respiratory system mechanics, gas exchange, and outcomes in mechanically ventilated patients with COVID-19-related acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med. 2022 Dec;10(12):1178-88.Full text Abstract
757. Rice TW, Janz DR. In defense of evidence-based medicine for the treatment of COVID-19 ARDS. Ann Am Thorac Soc. 2020 Jul;17(7):787-9.Full text Abstract
758. Dondorp AM, Hayat M, Aryal D, et al. Respiratory support in COVID-19 patients, with a focus on resource-limited settings. Am J Trop Med Hyg. 2020 Jun;102(6):1191-7.Full text Abstract
759. Carsetti A, Damia Paciarini A, Marini B, et al. Prolonged prone position ventilation for SARS-CoV-2 patients is feasible and effective. Crit Care. 2020 May 15;24(1):225.Full text Abstract
760. Fayed M, Maroun W, Elnahla A, et al. Prone vs. supine position ventilation in intubated COVID-19 patients: a systematic review and meta-analysis. Cureus. 2023 May;15(5):e39636.Full text Abstract
761. Khokher W, Malhas SE, Beran A, et al. Inhaled pulmonary vasodilators in COVID-19 infection: a systematic review and meta-analysis. J Intensive Care Med. 2022 Oct;37(10):1370-82.Full text Abstract
762. Urner M, Barnett AG, Bassi GL, et al. Venovenous extracorporeal membrane oxygenation in patients with acute covid-19 associated respiratory failure: comparative effectiveness study. BMJ. 2022 May 4;377:e068723.Full text Abstract
763. Bertini P, Guarracino F, Falcone M, et al. ECMO in COVID-19 patients: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2022 Aug;36(8 Pt A):2700-6.Full text Abstract
764. Ling RR, Ramanathan K, Sim JJL, et al. Evolving outcomes of extracorporeal membrane oxygenation during the first 2 years of the COVID-19 pandemic: a systematic review and meta-analysis. Crit Care. 2022 May 23;26(1):147.Full text Abstract
765. Watanabe A, Yasuhara J, Karube T, et al. Extracorporeal membrane oxygenation in children with COVID-19: a systematic review and meta-analysis. Pediatr Crit Care Med. 2023 May 1;24(5):406-16.Full text Abstract
766. Tran A, Fernando SM, Rochwerg B, et al. Prognostic factors associated with mortality among patients receiving venovenous extracorporeal membrane oxygenation for COVID-19: a systematic review and meta-analysis. Lancet Respir Med. 2023 Mar;11(3):235-44.Full text Abstract
767. Kannapadi NV, Jami M, Premraj L, et al. Neurological complications in COVID-19 patients with ECMO support: a systematic review and meta-analysis. Heart Lung Circ. 2022 Feb;31(2):292-8.Full text Abstract
768. Li CMF, Densy Deng X, Ma YF, et al. Neurologic complications of patients with COVID-19 requiring extracorporeal membrane oxygenation: a systematic review and meta-analysis. Crit Care Explor. 2023 Apr;5(4):e0887.Full text Abstract
769. Jin Y, Zhang Y, Liu J, et al. Thrombosis and bleeding in patients with COVID-19 requiring extracorporeal membrane oxygenation: a systematic review and meta-analysis. Res Pract Thromb Haemost. 2023 Feb;7(2):100103.Full text Abstract
770. Zhang S, Li Y, Liu G, et al. Intermediate-to-therapeutic versus prophylactic anticoagulation for coagulopathy in hospitalized COVID-19 patients: a systemic review and meta-analysis. Thromb J. 2021 Nov 24;19(1):91.Full text Abstract
771. Bonfim LCMG, Guerini IS, Zambon MG, et al. Optimal dosing of heparin for prophylactic anticoagulation in critically ill COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. J Crit Care. 2023 Oct;77:154344.Full text Abstract
772. Andreas M, Piechotta V, Skoetz N, et al. Interventions for palliative symptom control in COVID-19 patients. Cochrane Database Syst Rev. 2021 Aug 23;8(8):CD015061.Full text Abstract
773. Nana M, Hodson K, Lucas N, et al. Diagnosis and management of covid-19 in pregnancy. BMJ. 2022 Apr 26;377:e069739.Full text Abstract
774. Girolamo RD, Khalil A, Rizzo G, et al. Systematic review and critical evaluation of quality of clinical practice guidelines on the management of SARS-CoV-2 infection in pregnancy. Am J Obstet Gynecol MFM. 2022 Sep;4(5):100654.Full text Abstract
775. Garneau WM, Jones-Beatty K, Ufua MO, et al. Analysis of clinical outcomes of pregnant patients treated with nirmatrelvir and ritonavir for acute SARS-CoV-2 infection. JAMA Netw Open. 2022 Nov 1;5(11):e2244141.Full text Abstract
776. Izcovich A, Siemieniuk RA, Bartoszko JJ, et al. Adverse effects of remdesivir, hydroxychloroquine and lopinavir/ritonavir when used for COVID-19: systematic review and meta-analysis of randomised trials. BMJ Open. 2022 Mar 2;12(3):e048502.Full text Abstract
777. Devgun JM, Zhang R, Brent J, et al. Identification of bradycardia following remdesivir administration through the US Food and Drug Administration American College of Medical Toxicology COVID-19 toxic pharmacovigilance project. JAMA Netw Open. 2023 Feb 1;6(2):e2255815.Full text Abstract
778. Ishisaka Y, Aikawa T, Malik A, et al. Association of remdesivir use with bradycardia: a systematic review and meta-analysis. J Med Virol. 2023 Aug;95(8):e29018. Abstract
779. Zhuang W, Xu J, Wu Y, et al. Post-marketing safety concerns with nirmatrelvir: a disproportionality analysis of spontaneous reports submitted to the FDA adverse event reporting system. Br J Clin Pharmacol. 2023 Sep;89(9):2830-42. Abstract
780. Moores LK, Tritschler T, Brosnahan S, et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST guideline and expert panel report. Chest. 2020 Sep;158(3):1143-63.Full text Abstract
781. Vlaar APJ, Witzenrath M, van Paassen P, et al. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir Med. 2022 Dec;10(12):1137-46.Full text Abstract
782. US Food and Drug Administration. FDA authorizes Gohibic (vilobelimab) injection for the treatment of COVID-19. Apr 2023 [internet publication].Full text
783. Kyriazopoulou E, Huet T, Cavalli G, et al. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. Lancet Rheumatol. 2021 Oct;3(10):e690-7.Full text Abstract
784. Barkas F, Ntekouan SF, Kosmidou M, et al. Anakinra in hospitalized non-intubated patients with coronavirus disease 2019: a systematic review and meta-analysis. Rheumatology (Oxford). 2021 Dec 1;60(12):5527-37.Full text Abstract
785. Somagutta MKR, Lourdes Pormento MK, Hamid P, et al. The safety and efficacy of anakinra, an interleukin-1 antagonist in severe cases of COVID-19: a systematic review and meta-analysis. Infect Chemother. 2021 Jun;53(2):221-37.Full text Abstract
786. Davidson M, Menon S, Chaimani A, et al. Interleukin-1 blocking agents for treating COVID-19. Cochrane Database Syst Rev. 2022 Jan 26;(1):CD015308.Full text Abstract
787. Mikolajewska A, Fischer AL, Piechotta V, et al. Colchicine for the treatment of COVID-19. Cochrane Database Syst Rev. 2021 Oct 18;(10):CD015045.Full text Abstract
788. Estcourt LJ, Cohn CS, Pagano MB, et al. Clinical practice guidelines from the association for the advancement of blood and biotherapies (AABB): COVID-19 convalescent plasma. Ann Intern Med. 2022 Sep;175(9):1310-21.Full text Abstract
789. Iannizzi C, Chai KL, Piechotta V, et al. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev. 2023 May 10;5(5):CD013600.Full text Abstract
790. Siemieniuk RA, Bartoszko JJ, Díaz Martinez JP, et al. Antibody and cellular therapies for treatment of covid-19: a living systematic review and network meta-analysis. BMJ. 2021 Sep 23;374:n2231.Full text Abstract
791. Janiaud P, Axfors C, Schmitt AM, et al. Association of convalescent plasma treatment with clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. JAMA. 2021 Mar 23;325(12):1185-95.Full text Abstract
792. Gupta T, Kannan S, Kalra B, et al. Systematic review and meta-analysis of randomised controlled trials testing the safety and efficacy of convalescent plasma in the treatment of coronavirus disease 2019 (COVID-19): evidence-base for practise and implications for research. Transfus Med. 2021 Dec;31(6):409-20.Full text Abstract
793. Klassen SA, Senefeld JW, Johnson PW, et al. The effect of convalescent plasma therapy on mortality among patients with COVID-19: systematic review and meta-analysis. Mayo Clin Proc. 2021 May;96(5):1262-75.Full text Abstract
794. Wardhani SO, Fajar JK, Wulandari L, et al. Association between convalescent plasma and the risk of mortality among patients with COVID-19: a meta-analysis. F1000Res. 2021 Feb 3;10:64.Full text Abstract
795. Kloypan C, Saesong M, Sangsuemoon J, et al. Convalescent plasma for COVID-19: a meta-analysis of clinical trials and real-world evidence. Eur J Clin Invest. 2021 Aug 10:e13663.Full text Abstract
796. Axfors C, Janiaud P, Schmitt AM, et al. Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials. BMC Infect Dis. 2021 Nov 20;21(1):1170.Full text Abstract
797. Senefeld JW, Franchini M, Mengoli C, et al. COVID-19 convalescent plasma for the treatment of immunocompromised patients: a systematic review and meta-analysis. JAMA Netw Open. 2023 Jan 3;6(1):e2250647.Full text Abstract
798. Levine AC, Fukuta Y, Huaman MA, et al. Coronavirus disease 2019 convalescent plasma outpatient therapy to prevent outpatient hospitalization: a meta-analysis of individual participant data from 5 randomized trials. Clin Infect Dis. 2023 Jun 16;76(12):2077-86.Full text Abstract
799. Kimber C, Valk SJ, Chai KL, et al. Hyperimmune immunoglobulin for people with COVID-19. Cochrane Database Syst Rev. 2023 Jan 26;1(1):CD015167.Full text Abstract
800. Xiang HR, Cheng X, Li Y, et al. Efficacy of IVIG (intravenous immunoglobulin) for corona virus disease 2019 (COVID-19): a meta-analysis. Int Immunopharmacol. 2021 Jul;96:107732.Full text Abstract
801. Liu X, Zhang Y, Lu L, et al. Benefits of high-dose intravenous immunoglobulin on mortality in patients with severe COVID-19: An updated systematic review and meta-analysis. Front Immunol. 2023 Jan 23;14:1116738.Full text Abstract
802. Temesgen Z, Burger CD, Baker J, et al. Lenzilumab in hospitalised patients with COVID-19 pneumonia (LIVE-AIR): a phase 3, randomised, placebo-controlled trial. Lancet Respir Med. 2022 Mar;10(3):237-46.Full text Abstract
803. Cremer PC, Abbate A, Hudock K, et al. Mavrilimumab in patients with severe COVID-19 pneumonia and systemic hyperinflammation (MASH-COVID): an investigator initiated, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Rheumatol. 2021 Jun;3(6):e410-8.Full text Abstract
804. Xi AR, Luo YJ, Guan JT, et al. Efficacy and safety of granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies in COVID-19 patients: a meta-analysis. Inflammopharmacology. 2023 Feb;31(1):275-85.Full text Abstract
805. Li Y, Wei Z, Ma X, et al. Efficacy and safety of mesenchymal stromal cells therapy for COVID-19 infection: a systematic review and meta-analysis. Curr Stem Cell Res Ther. 2023;18(1):143-52. Abstract
806. Kirkham AM, Bailey AJM, Monaghan M, et al. Updated living systematic review and meta-analysis of controlled trials of mesenchymal stromal cells to treat COVID-19: a framework for accelerated synthesis of trial evidence for rapid approval - FASTER approval. Stem Cells Transl Med. 2022 Jul 20;11(7):675-87.Full text Abstract
807. Yao W, Dong H, Qi J, et al. Safety and efficacy of mesenchymal stem cells in severe/critical patients with COVID-19: a systematic review and meta-analysis. EClinicalMedicine. 2022 Sep;51:101545.Full text Abstract
808. WHO Solidarity Trial Consortium; Pan H, Peto R, Henao-Restrepo AM, et al. Repurposed antiviral drugs for Covid-19: interim WHO Solidarity trial results. N Engl J Med. 2021 Feb 11;384(6):497-511.Full text Abstract
809. Feld JJ, Kandel C, Biondi MJ, et al. Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respir Med. 2021 May;9(5):498-510.Full text Abstract
810. Reis G, Moreira Silva EAS, Medeiros Silva DC, et al. Early treatment with pegylated interferon lambda for Covid-19. N Engl J Med. 2023 Feb 9;388(6):518-28.Full text Abstract
811. Caly L, Druce JD, Catton MG, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020 Jun;178:104787.Full text Abstract
812. Bryant A, Lawrie TA, Dowswell T, et al. Ivermectin for prevention and treatment of COVID-19 infection: a systematic review, meta-analysis, and trial sequential analysis to inform clinical guidelines. Am J Ther. 2021 Jun 21;28(4):e434-60.Full text Abstract
813. Kory P, Meduri GU, Varon J, et al. Review of the emerging evidence demonstrating the efficacy of ivermectin in the prophylaxis and treatment of COVID-19. Am J Ther. 2021 Apr 22;28(3):e299-318.Full text Abstract
814. Zein AFMZ, Sulistiyana CS, Raffaelo WM, et al. Ivermectin and mortality in patients with COVID-19: a systematic review, meta-analysis, and meta-regression of randomized controlled trials. Diabetes Metab Syndr. 2021 Jun 27;15(4):102186.Full text Abstract
815. Kow CS, Merchant HA, Mustafa ZU, et al. The association between the use of ivermectin and mortality in patients with COVID-19: a meta-analysis. Pharmacol Rep. 2021 Oct;73(5):1473-9.Full text Abstract
816. Padhy BM, Mohanty RR, Das S, et al. Therapeutic potential of ivermectin as add on treatment in COVID 19: a systematic review and meta-analysis. J Pharm Pharm Sci. 2020;23:462-9.Full text Abstract
817. Azeez TA, Lakoh S, Adeleke AA, et al. Chemoprophylaxis against COVID-19 among health-care workers using ivermectin in low- and middle-income countries: a systematic review and meta-analysis. Indian J Pharmacol. 2021 Nov-Dec;53(6):493-8.Full text Abstract
818. Roman YM, Burela PA, Pasupuleti V, et al. Ivermectin for the treatment of coronavirus disease 2019: a systematic review and meta-analysis of randomized controlled trials. Clin Infect Dis. 2022 Mar 23;74(6):1022-9.Full text Abstract
819. Deng J, Zhou F, Ali S, et al. Efficacy and safety of ivermectin for the treatment of COVID-19: a systematic review and meta-analysis. QJM. 2021 Dec 20;114(10):721-32.Full text Abstract
820. Bitterman A, Martins CP, Cices A, et al. Comparison of trials using ivermectin for COVID-19 between regions with high and low prevalence of strongyloidiasis: a meta-analysis. JAMA Netw Open. 2022 Mar 1;5(3):e223079.Full text Abstract
821. Marcolino MS, Meira KC, Guimarães NS, et al. Systematic review and meta-analysis of ivermectin for treatment of COVID-19: evidence beyond the hype. BMC Infect Dis. 2022 Jul 23;22(1):639.Full text Abstract
822. Popp M, Reis S, Schießer S, et al. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst Rev. 2022 Jun 21;6(6):CD015017.Full text Abstract
823. Nyirenda JL, Sofroniou M, Toews I, et al. Fluvoxamine for the treatment of COVID-19. Cochrane Database Syst Rev. 2022 Sep 14;9(9):CD015391.Full text Abstract
824. Guo CM, Harari O, Chernecki C, et al. Fluvoxamine for the early treatment of COVID-19: a meta-analysis of randomized clinical trials. Am J Trop Med Hyg. 2022 Mar 9;106(5):1315-20.Full text Abstract
825. European Medicines Agency. EMA reviewing data on sabizabulin for COVID-19. Jul 2022 [internet publication].Full text
826. Barnette KG, Gordon MS, Rodriguez D, et al. Oral sabizabulin for high-risk, hospitalized adults with Covid-19: interim analysis. NEJM Evid. 2022 Sep;1(9):EVIDoa2200145.Full text Abstract
827. Cao Z, Gao W, Bao H, et al. VV116 versus nirmatrelvir-ritonavir for oral treatment of Covid-19. N Engl J Med. 2023 Feb 2;388(5):406-17.Full text Abstract
828. Fan X, Dai X, Ling Y, et al. Oral VV116 versus placebo in patients with mild-to-moderate COVID-19 in China: a multicentre, double-blind, phase 3, randomised controlled study. Lancet Infect Dis. 2024 Feb;24(2):129-39.Full text Abstract
829. McCarthy MW. Ensitrelvir as a potential treatment for COVID-19. Expert Opin Pharmacother. 2022 Dec;23(18):1995-8. Abstract
830. Yotsuyanagi H, Ohmagari N, Doi Y, et al. A phase 2/3 study of S-217622 in participants with SARS-CoV-2 infection (phase 3 part). Medicine (Baltimore). 2023 Feb 22;102(8):e33024.Full text Abstract
831. Yotsuyanagi H, Ohmagari N, Doi Y, et al. Efficacy and safety of 5-day oral ensitrelvir for patients with mild to moderate COVID-19: the SCORPIO-SR randomized clinical trial. JAMA Netw Open. 2024 Feb 5;7(2):e2354991.Full text Abstract
832. ClinicalTrials.gov. Study to access the efficacy and safety of STI-1558 in adult subjects with mild or moderate (COVID-19). May 2024 [internet publication].Full text
833. Cao B, Wang Y, Lu H, et al. Oral simnotrelvir for adult patients with mild-to-moderate Covid-19. N Engl J Med. 2024 Jan 18;390(3):230-41.Full text Abstract
834. ClinicalTrials.gov. SUNRISE-3: efficacy and safety of bemnifosbuvir in high-risk outpatients with COVID-19. Aug 2024 [internet publication].Full text
835. Griesel M, Wagner C, Mikolajewska A, et al. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2022 Mar 9;(3):CD015125.Full text Abstract
836. RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022 Jan 8;399(10320):143-51.Full text Abstract
837. Eikelboom JW, Jolly SS, Belley-Cote EP, et al. Colchicine and aspirin in community patients with COVID-19 (ACT): an open-label, factorial, randomised, controlled trial. Lancet Respir Med. 2022 Dec;10(12):1160-8.Full text Abstract
838. Eikelboom JW, Jolly SS, Belley-Cote EP, et al. Colchicine and the combination of rivaroxaban and aspirin in patients hospitalised with COVID-19 (ACT): an open-label, factorial, randomised, controlled trial. Lancet Respir Med. 2022 Dec;10(12):1169-77.Full text Abstract
839. Su W, Miao H, Guo Z, et al. Associations between the use of aspirin or other antiplatelet drugs and all-cause mortality among patients with COVID-19: a meta-analysis. Front Pharmacol. 2022 Oct 5;13:989903.Full text Abstract
840. Wijaya I, Andhika R, Huang I, et al. The effects of aspirin on the outcome of COVID-19: a systematic review and meta-analysis. Clin Epidemiol Glob Health. 2021 Oct-Dec;12:100883.Full text Abstract
841. Popp M, Stegemann M, Riemer M, et al. Antibiotics for the treatment of COVID-19. Cochrane Database Syst Rev. 2021 Oct 22;(10):CD015025.Full text Abstract
842. Butler CC, Yu LM, Dorward J, et al. Doxycycline for community treatment of suspected COVID-19 in people at high risk of adverse outcomes in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet Respir Med. 2021 Sep;9(9):1010-20.Full text Abstract
843. Jolliffe DA, Camargo CA Jr, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021 May;9(5):276-92.Full text Abstract
844. Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020 Apr 21:100190.Full text Abstract
845. Abioye AI, Bromage S, Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ Glob Health. 2021 Jan;6(1):e003176.Full text Abstract
846. Bhowmik KK, Barek MA, Aziz MA, et al. Impact of high-dose vitamin C on the mortality, severity, and duration of hospital stay in COVID-19 patients: a meta-analysis. Health Sci Rep. 2022 Sep;5(5):e762.Full text Abstract
847. Olczak-Pruc M, Swieczkowski D, Ladny JR, et al. Vitamin C supplementation for the treatment of COVID-19: a systematic review and meta-analysis. Nutrients. 2022 Oct 10;14(19):4217.Full text Abstract
848. Rawat D, Roy A, Maitra S, et al. Vitamin C and COVID-19 treatment: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr. 2021 Oct 28;15(6):102324.Full text Abstract
849. Kwak SG, Choo YJ, Chang MC. The effectiveness of high-dose intravenous vitamin C for patients with coronavirus disease 2019: a systematic review and meta-analysis. Complement Ther Med. 2021 Dec 22;64:102797.Full text Abstract
850. Stroehlein JK, Wallqvist J, Iannizzi C, et al. Vitamin D supplementation for the treatment of COVID-19: a living systematic review. Cochrane Database Syst Rev. 2021 May 24;(5):CD015043.Full text Abstract
851. Pal R, Banerjee M, Bhadada SK, et al. Vitamin D supplementation and clinical outcomes in COVID-19: a systematic review and meta-analysis. J Endocrinol Invest. 2022 Jan;45(1):53-68.Full text Abstract
852. Szarpak L, Filipiak KJ, Gasecka A, et al. Vitamin D supplementation to treat SARS-CoV-2 positive patients: evidence from meta-analysis. Cardiol J. 2022;29(2):188-96.Full text Abstract
853. Tentolouris N, Samakidou G, Eleftheriadou I, et al. The effect of vitamin D supplementation on mortality and intensive care unit admission of COVID-19 patients: a systematic review, meta-analysis and meta-regression. Diabetes Metab Res Rev. 2022 May;38(4):e3517.Full text Abstract
854. Shah K, Varna VP, Sharma U, et al. Does vitamin D supplementation reduce COVID-19 severity? A systematic review. QJM. 2022 Oct 25;115(10):665-72.Full text Abstract
855. Hosseini B, El Abd A, Ducharme FM. Effects of vitamin D supplementation on COVID-19 related outcomes: a systematic review and meta-analysis. Nutrients. 2022 May 20;14(10):2134.Full text Abstract
856. D'Ecclesiis O, Gavioli C, Martinoli C, et al. Vitamin D and SARS-CoV2 infection, severity and mortality: a systematic review and meta-analysis. PLoS One. 2022 Jul 6;17(7):e0268396.Full text Abstract
857. Ghoreshi ZA, Charostad J, Arefinia N, et al. Effect of vitamin D supplementation on clinical outcomes in adult patients with COVID-19: a GRADE-assessed systematic review and meta-analysis of randomized controlled trials. Pharmacol Res Perspect. 2024 Oct;12(5):e70013.Full text Abstract
858. Tabatabaeizadeh SA. Zinc supplementation and COVID-19 mortality: a meta-analysis. Eur J Med Res. 2022 May 23;27(1):70.Full text Abstract
859. Rheingold SZ, Raval C, Gordon AM, et al. Zinc supplementation associated with a decrease in mortality in COVID-19 patients: a meta-analysis. Cureus. 2023 Jun;15(6):e40231.Full text Abstract
860. Yue HY, Zeng J, Wang Y, et al. Efficacy of omega-3 fatty acids for hospitalized COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr. 2023 Sep;32(3):308-20.Full text Abstract
861. Neris Almeida Viana S, do Reis Santos Pereira T, de Carvalho Alves J, et al. Benefits of probiotic use on COVID-19: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022 Sep 30:1-13. Abstract
862. Tian Y, Ran H, Wen X, et al. Probiotics improve symptoms of patients with COVID-19 through gut-lung axis: a systematic review and meta-analysis. Front Nutr. 2023 May 22;10:1179432.Full text Abstract
863. Sohail A, Cheema HA, Mithani MS, et al. Probiotics for the prevention and treatment of COVID-19: a rapid systematic review and meta-analysis. Front Nutr. 2023;10:1274122.Full text Abstract
864. Lan SH, Lee HZ, Chao CM, et al. Efficacy of melatonin in the treatment of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. J Med Virol. 2022 May;94(5):2102-7.Full text Abstract
865. Faridzadeh A, Tabashiri A, Miri HH, et al. The role of melatonin as an adjuvant in the treatment of COVID-19: a systematic review. Heliyon. 2022 Oct;8(10):e10906.Full text Abstract
866. Molina-Carballo A, Palacios-López R, Jerez-Calero A, et al. Protective effect of melatonin administration against SARS-CoV-2 infection: a systematic review. Curr Issues Mol Biol. 2021 Dec 22;44(1):31-45.Full text Abstract
867. Wang XC, Wu GL, Cai YF, et al. The safety and efficacy of melatonin in the treatment of COVID-19: a systematic review and meta-analysis. Medicine (Baltimore). 2022 Sep 30;101(39):e30874.Full text Abstract
868. Roach A, Chikwe J, Catarino P, et al. Lung transplantation for Covid-19-related respiratory failure in the United States. N Engl J Med. 2022 Mar 24;386(12):1187-8.Full text Abstract
869. Kurihara C, Manerikar A, Querrey M, et al. Clinical characteristics and outcomes of patients with COVID-19-associated acute respiratory distress syndrome who underwent lung transplant. JAMA. 2022 Feb 15;327(7):652-61.Full text Abstract
870. Centers for Disease Control and Prevention. COVID-19: clinical course - progression, management, and treatment. Jun 2024 [internet publication].Full text
871. Centers for Disease Control and Prevention. COVID-19 treatment: clinical care for outpatients. Jul 2024 [internet publication].Full text
872. Centers for Disease Control and Prevention. COVID-19: clinical considerations for special populations. Jun 2024 [internet publication].Full text
873. American College of Physicians. Coronavirus disease 2019 (COVID-19): practice points. Jul 2024 [internet publication].Full text
874. Centers for Disease Control and Prevention. Interim clinical considerations for use of COVID-19 vaccines in the United States. Sep 2024 [internet publication].Full text
875. American Academy of Pediatrics. COVID-19 interim guidance. Feb 2023 [internet publication].Full text
876. World Health Organization. COVID-19 outbreak toolbox. Jul 2024 [internet publication].Full text
877. UK Health Security Agency. COVID-19: the green book, chapter 14a. Sep 2024 [internet publication].Full text
878. Australian Government Department of Health and Aged Care; Australian Centre for Disease Control. Coronavirus disease 2019 (COVID-19). Jun 2024 [internet publication].Full text
879. Royal College of Obstetricians and Gynaecologists. Coronavirus (COVID-19) infection in pregnancy: information for healthcare professionals. Dec 2022 [internet publication].Full text
880. White H, McDonald SJ, Barber B, et al. Care for adults with COVID-19: living guidelines from the National COVID-19 Clinical Evidence Taskforce. Med J Aust. 2022 Oct 3;217(7):368-78.Full text Abstract
881. Scottish Intercollegiate Guidelines Network. Prevention and management of venous thromboembolism in COVID-19. Dec 2021 [internet publication].Full text
882. Chalmers JD, Crichton ML, Goeminne PC, et al. Management of hospitalised adults with coronavirus disease 2019 (COVID-19): a European Respiratory Society living guideline. Eur Respir J. 2021 Apr 15;57(4):2100048.Full text Abstract
883. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May;46(5):846-8.Full text Abstract
884. Hasan SS, Capstick T, Ahmed R, et al. Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis. Expert Rev Respir Med. 2020 Nov;14(11):1149-63.Full text Abstract
885. Dmytriw AA, Chibbar R, Chen PPY, et al. Outcomes of acute respiratory distress syndrome in COVID-19 patients compared to the general population: a systematic review and meta-analysis. Expert Rev Respir Med. 2021 Oct;15(10):1347-54.Full text Abstract
886. de la Calle C, Lalueza A, Mancheño-Losa M, et al. Impact of viral load at admission on the development of respiratory failure in hospitalized patients with SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021 Jun;40(6):1209-16.Full text Abstract
887. Elezkurtaj S, Greuel S, Ihlow J, et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci Rep. 2021 Feb 19;11(1):4263.Full text Abstract
888. Ioannidis JPA, Axfors C, Contopoulos-Ioannidis DG. Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. Environ Res. 2020 Sep;188:109890.Full text Abstract
889. Sumner MW, Kanngiesser A, Lotfali-Khani K, et al. Severe outcomes associated with SARS-CoV-2 infection in children: a systematic review and meta-analysis. Front Pediatr. 2022 Jun 9;10:916655.Full text Abstract
890. Justino DCP, Silva DFO, Costa KTDS, et al. Prevalence of comorbidities in deceased patients with COVID-19: a systematic review. Medicine (Baltimore). 2022 Sep 23;101(38):e30246.Full text Abstract
891. Qian Z, Lu S, Luo X, et al. Mortality and clinical interventions in critically ill patient with coronavirus disease 2019: a systematic review and meta-analysis. Front Med (Lausanne). 2021 Jul 23;8:635560.Full text Abstract
892. Chandel A, Leazer S, Alcover KC, et al. Intensive care and organ support related mortality in patients with COVID-19: a systematic review and meta-analysis. Crit Care Explor. 2023 Mar;5(3):e0876.Full text Abstract
893. Docherty AB, Mulholland RH, Lone NI, et al. Changes in in-hospital mortality in the first wave of COVID-19: a multicentre prospective observational cohort study using the WHO Clinical Characterisation Protocol UK. Lancet Respir Med. 2021 Jul;9(7):773-85.Full text Abstract
894. Gray WK, Navaratnam AV, Day J, et al. COVID-19 hospital activity and in-hospital mortality during the first and second waves of the pandemic in England: an observational study. Thorax. 2022 Nov;77(11):1113-20.Full text Abstract
895. Asch DA, Sheils NE, Islam MN, et al. Variation in US hospital mortality rates for patients admitted with COVID-19 during the first 6 months of the pandemic. JAMA Intern Med. 2021 Apr 1;181(4):471-8.Full text Abstract
896. Nguyen NT, Chinn J, Nahmias J, et al. Outcomes and mortality among adults hospitalized with COVID-19 at US medical centers. JAMA Netw Open. 2021 Mar 1;4(3):e210417.Full text Abstract
897. Finelli L, Gupta V, Petigara T, et al. Mortality among US patients hospitalized with SARS-CoV-2 infection in 2020. JAMA Netw Open. 2021 Apr 1;4(4):e216556.Full text Abstract
898. Anesi GL, Jablonski J, Harhay MO, et al. Characteristics, outcomes, and trends of patients with COVID-19-related critical illness at a learning health system in the United States. Ann Intern Med. 2021 May;174(5):613-21.Full text Abstract
899. Baptista A, Vieira AM, Capela E, et al. COVID-19 fatality rates in hospitalized patients: a new systematic review and meta-analysis. J Infect Public Health. 2023 Oct;16(10):1606-12.Full text Abstract
900. Ioannidis JPA. Reconciling estimates of global spread and infection fatality rates of COVID-19: an overview of systematic evaluations. Eur J Clin Invest. 2021 Mar 26:e13554.Full text Abstract
901. Axfors C, Ioannidis JPA. Infection fatality rate of COVID-19 in community-dwelling elderly populations. Eur J Epidemiol. 2022 Mar;37(3):235-49.Full text Abstract
902. Centers for Disease Control and Prevention. COVID-19 pandemic planning scenarios. Mar 2021 [internet publication].Full text
903. Rajgor DD, Lee MH, Archuleta S, et al. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020 Jul;20(7):776-7.Full text Abstract
904. Ghayda RA, Lee KH, Han YJ, et al. The global case fatality rate of coronavirus disease 2019 by continents and national income: a meta-analysis. J Med Virol. 2022 Jun;94(6):2402-13.Full text Abstract
905. Alimohamadi Y, Tola HH, Abbasi-Ghahramanloo A, et al. Case fatality rate of COVID-19: a systematic review and meta-analysis. J Prev Med Hyg. 2021 Jun;62(2):E311-20.Full text Abstract
906. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 17;41(2):145-51.Full text Abstract
907. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020 Jun;20(6):669-77.Full text Abstract
908. Sorbello M, El-Boghdadly K, Di Giacinto I, et al. The Italian COVID-19 outbreak: experiences and recommendations from clinical practice. Anaesthesia. 2020 Jun;75(6):724-32.Full text Abstract
909. Bixler D, Miller AD, Mattison CP, et al. SARS-CoV-2–associated deaths among persons aged <21 years: United States, February 12–July 31, 2020. MMWR Morb Mortal Wkly Rep. 2020 Sep 18;69(37):1324-9.Full text Abstract
910. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 6;323(16):1574-81.Full text Abstract
911. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 Mar 19;323(16):1612-4.Full text Abstract
912. Kim K, Cho K, Song J, et al. The case fatality rate of COVID-19 during the Delta and the Omicron epidemic phase: a meta-analysis. J Med Virol. 2023 Feb;95(2):e28522. Abstract
913. Ahmad SJ, Degiannis JR, Borucki J, et al. Fatality rates after infection with the Omicron variant (B.1.1.529): how deadly has it been? A systematic review and meta-analysis. J Acute Med. 2024 Jun 1;14(2):51-60. Abstract
914. Centre for Evidence-Based Medicine; Oke J, Heneghan C. Global COVID-19 case fatality rates. Mar 2020 [internet publication].Full text
915. Mahase E. Covid-19: the problems with case counting. BMJ. 2020 Sep 3;370:m3374.Full text Abstract
916. Centre for Evidence-Based Medicine; Spencer E, Jefferson T, Brassey J, et al. When is Covid, Covid? Sep 2020 [internet publication].Full text
917. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020 May 12;323(18):1775-6.Full text Abstract
918. Izcovich A, Ragusa MA, Tortosa F, et al. Prognostic factors for severity and mortality in patients infected with COVID-19: a systematic review. PLoS One. 2020;15(11):e0241955.Full text Abstract
919. Booth A, Reed AB, Ponzo S, et al. Population risk factors for severe disease and mortality in COVID-19: a global systematic review and meta-analysis. PLoS One. 2021 Mar 4;16(3):e0247461.Full text Abstract
920. Zhang L, Hou J, Ma FZ, et al. The common risk factors for progression and mortality in COVID-19 patients: a meta-analysis. Arch Virol. 2021 Aug;166(8):2071-87.Full text Abstract
921. Dumitrascu F, Branje KE, Hladkowicz ES, et al. Association of frailty with outcomes in individuals with COVID-19: a living review and meta-analysis. J Am Geriatr Soc. 2021 Sep;69(9):2419-29.Full text Abstract
922. Bellou V, Tzoulaki I, van Smeden M, et al. Prognostic factors for adverse outcomes in patients with COVID-19: a field-wide systematic review and meta-analysis. Eur Respir J. 2022 Feb 3;59(2):2002964.Full text Abstract
923. Santus P, Radovanovic D, Saderi L, et al. Severity of respiratory failure at admission and in-hospital mortality in patients with COVID-19: a prospective observational multicentre study. BMJ Open. 2020 Oct 10;10(10):e043651.Full text Abstract
924. Shi C, Wang L, Ye J, et al. Predictors of mortality in patients with coronavirus disease 2019: a systematic review and meta-analysis. BMC Infect Dis. 2021 Jul 8;21(1):663.Full text Abstract
925. Javanmardi F, Keshavarzi A, Akbari A, et al. Prevalence of underlying diseases in died cases of COVID-19: a systematic review and meta-analysis. PLoS One. 2020 Oct 23;15(10):e0241265.Full text Abstract
926. Shi Q, Wang Z, Liu J, et al. Risk factors for poor prognosis in children and adolescents with COVID-19: a systematic review and meta-analysis. EClinicalMedicine. 2021 Nov;41:101155.Full text Abstract
927. Ramzi ZS. Hospital readmissions and post-discharge all-cause mortality in COVID-19 recovered patients: a systematic review and meta-analysis. Am J Emerg Med. 2022 Jan;51:267-79.Full text Abstract
928. Choi B, Choudhary MC, Regan J, et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N Engl J Med. 2020 Dec 3;383(23):2291-3.Full text Abstract
929. Lund LC, Hallas J, Nielsen H, et al. Post-acute effects of SARS-CoV-2 infection in individuals not requiring hospital admission: a Danish population-based cohort study. Lancet Infect Dis. 2021 Oct;21(10):1373-82.Full text Abstract
930. UK Health Security Agency. COVID-19: investigation and management of suspected SARS-CoV-2 reinfections. Mar 2021 [internet publication].Full text
931. Mao YJ, Wang WW, Ma J, et al. Reinfection rates among patients previously infected by SARS-CoV-2: systematic review and meta-analysis. Chin Med J (Engl). 2021 Dec 13;135(2):145-52.Full text Abstract
932. Helfand M, Fiordalisi C, Wiedrick J, et al. Risk for reinfection after SARS-CoV-2: a living, rapid review for American College of Physicians practice points on the role of the antibody response in conferring immunity following SARS-CoV-2 infection. Ann Intern Med. 2022 Apr;175(4):547-55.Full text Abstract
933. Roskosky M, Borah BF, DeJonge PM, et al. Notes from the field: SARS-CoV-2 omicron variant infection in 10 persons within 90 days of previous SARS-CoV-2 Delta variant infection - four states, October 2021 – January 2022. MMWR Morb Mortal Wkly Rep. 2022 Apr 8;71(14):524-6.Full text Abstract
934. Flacco ME, Acuti Martellucci C, Baccolini V, et al. Risk of reinfection and disease after SARS-CoV-2 primary infection: meta-analysis. Eur J Clin Invest. 2022 Oct;52(10):e13845.Full text Abstract
935. Nguyen NN, Nguyen YN, Hoang VT, et al. SARS-CoV-2 reinfection and severity of the disease: a systematic review and meta-analysis. Viruses. 2023 Apr 14;15(4):967.Full text Abstract
936. Stephens DS, McElrath MJ. COVID-19 and the path to immunity. JAMA. 2020 Oct 6;324(13):1279-81.Full text Abstract
937. World Health Organization. COVID-19 natural immunity: scientific brief. May 2021 [internet publication].Full text
938. Savage HR, Santos VS, Edwards T, et al. Prevalence of neutralising antibodies against SARS-CoV-2 in acute infection and convalescence: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2021 Jul 8;15(7):e0009551.Full text Abstract
939. Arkhipova-Jenkins I, Helfand M, Armstrong C, et al. Antibody response after SARS-CoV-2 infection and implications for immunity: a rapid living review. Ann Intern Med. 2021 Jun;174(6):811-21.Full text Abstract
940. Flannery DD, Gouma S, Dhudasia MB, et al. Assessment of maternal and neonatal cord blood SARS-CoV-2 antibodies and placental transfer ratios. JAMA Pediatr. 2021 Jun 1;175(6):594-600.Full text Abstract
941. Centre for Evidence-Based Medicine; Plüddemann A, Aronson JK. What is the role of T cells in COVID-19 infection? Why immunity is about more than antibodies. Oct 2020 [internet publication].Full text
942. Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021 Feb 5;371(6529):eabf4063.Full text Abstract
943. Shrotri M, van Schalkwyk MCI, Post N, et al. T cell response to SARS-CoV-2 infection in humans: a systematic review. PLoS One. 2021;16(1):e0245532.Full text Abstract
944. Tarke A, Sidney J, Methot N, et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep Med. 2021 Jul 20;2(7):100355.Full text Abstract
945. Redd AD, Nardin A, Kared H, et al. CD8+ T-cell responses in COVID-19 convalescent individuals target conserved epitopes from multiple prominent SARS-CoV-2 circulating variants. Open Forum Infect Dis. 2021 Jul;8(7):ofab143.Full text Abstract
946. Guo L, Wang G, Wang Y, et al. SARS-CoV-2-specific antibody and T-cell responses 1 year after infection in people recovered from COVID-19: a longitudinal cohort study. Lancet Microbe. 2022 May;3(5):e348-56.Full text Abstract
947. Venet F, Gossez M, Bidar F, et al. T cell response against SARS-CoV-2 persists after one year in patients surviving severe COVID-19. EBioMedicine. 2022 Mar 26;78:103967.Full text Abstract
948. Petráš M. Highly effective naturally acquired protection against COVID-19 persists for at least 1 year: a meta-analysis. J Am Med Dir Assoc. 2021 Nov;22(11):2263-5.Full text Abstract
949. Chen Q, Zhu K, Liu X, et al. The protection provided by naturally acquired antibodies against subsequent SARS-CoV-2 infection: a systematic review and meta-analysis. Emerg Microbes Infect. 2022 Feb 23:1-44.Full text Abstract
950. COVID-19 Forecasting Team. Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis. Lancet. 2023 Mar 11;401(10379):833-42.Full text Abstract
951. Hansen CH, Friis NU, Bager P, et al. Risk of reinfection, vaccine protection, and severity of infection with the BA.5 omicron subvariant: a nation-wide population-based study in Denmark. Lancet Infect Dis. 2023 Feb;23(2):167-76.Full text Abstract
952. Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Protective effect of previous SARS-CoV-2 infection against Omicron BA.4 and BA.5 subvariants. N Engl J Med. 2022 Oct 27;387(17):1620-2.Full text Abstract
953. Chemaitelly H, Ayoub HH, Coyle P, et al. Protection of Omicron sub-lineage infection against reinfection with another Omicron sub-lineage. Nat Commun. 2022 Aug 9;13(1):4675.Full text Abstract
954. Chemaitelly H, Ayoub HH, Tang P, et al. Immune imprinting and protection against repeat reinfection with SARS-CoV-2. N Engl J Med. 2022 Nov 3;387(18):1716-8.Full text Abstract
955. Doshi P. Covid-19: do many people have pre-existing immunity? BMJ. 2020 Sep 17;370:m3563.Full text Abstract
956. Ng KW, Faulkner N, Cornish GH, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020 Dec 11;370(6522):1339-43.Full text Abstract
957. Ng RWY, Boon SS, Chen Z, et al. Cross-clade memory immunity in adults following SARS-CoV-1 infection in 2003. JAMA Netw Open. 2022 Dec 1;5(12):e2247723.Full text Abstract
958. Shenai MB, Rahme R, Noorchashm H. Equivalency of protection from natural immunity in COVID-19 recovered versus fully vaccinated persons: a systematic review and pooled analysis. Cureus. 2021 Oct 28;13(10):e19102.Full text Abstract
959. Chemaitelly H, Nagelkerke N, Ayoub HH, et al. Duration of immune protection of SARS-CoV-2 natural infection against reinfection. J Travel Med. 2022 Dec 27;29(8):taac109.Full text Abstract
960. Chemaitelly H, Ayoub HH, AlMukdad S, et al. Protection from previous natural infection compared with mRNA vaccination against SARS-CoV-2 infection and severe COVID-19 in Qatar: a retrospective cohort study. Lancet Microbe. 2022 Dec;3(12):e944-55.Full text Abstract
961. Bobrovitz N, Ware H, Ma X, et al. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression. Lancet Infect Dis. 2023 May;23(5):556-67.Full text Abstract
962. Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Effects of previous infection, vaccination, and hybrid immunity against symptomatic Alpha, Beta, and Delta SARS-CoV-2 infections: an observational study. EBioMedicine. 2023 Sep;95:104734.Full text Abstract
963. Zheng H, Wu S, Chen W, et al. Meta-analysis of hybrid immunity to mitigate the risk of Omicron variant reinfection. Front Public Health. 2024 Aug 26;12:1457266.Full text Abstract
964. Heesakkers H, van der Hoeven JG, Corsten S, et al. Clinical outcomes among patients with 1-year survival following intensive care unit treatment for COVID-19. JAMA. 2022 Feb 8;327(6):559-65.Full text Abstract
965. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020 Jul;18(7):1747-51.Full text Abstract
966. Gendron N, Dragon-Durey MA, Chocron R, et al. Lupus anticoagulant single positivity during the acute phase of COVID-19 is not associated with venous thromboembolism or in-hospital mortality. Arthritis Rheumatol. 2021 Nov;73(11):1976-85.Full text Abstract
967. Tan BK, Mainbourg S, Friggeri A, et al. Arterial and venous thromboembolism in COVID-19: a study-level meta-analysis. Thorax. 2021 Oct;76(10):970-9.Full text Abstract
968. Zaffanello M, Piacentini G, Nosetti L, et al. Thrombotic risk in children with COVID-19 infection: a systematic review of the literature. Thromb Res. 2021 Jul 16;205:92-8.Full text Abstract
969. Centre for Evidence-Based Medicine; Kernohan A, Calderon M. What are the risk factors and effectiveness of prophylaxis for venous thromboembolism in COVID-19 patients? Jul 2020 [internet publication].Full text
970. Cui LY, Cheng WW, Mou ZW, et al. Risk factors for pulmonary embolism in patients with COVID-19: a systemic review and meta-analysis. Int J Infect Dis. 2021 Aug 18;111:154-63.Full text Abstract
971. Zuin M, Barco S, Giannakoulas G, et al. Risk of venous thromboembolic events after COVID-19 infection: a systematic review and meta-analysis. J Thromb Thrombolysis. 2023 Apr;55(3):490-8.Full text Abstract
972. Massoud GP, Hazimeh DH, Amin G, et al. Risk of thromboembolic events in non-hospitalized COVID-19 patients: a systematic review. Eur J Pharmacol. 2023 Feb 15;941:175501.Full text Abstract
973. van Nieuwkoop C. COVID-19 associated pulmonary thrombosis. Thromb Res. 2020 Jul;191:151.Full text Abstract
974. Belen-Apak FB, Sarıalioğlu F. Pulmonary intravascular coagulation in COVID-19: possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J Thromb Thrombolysis. 2020 Aug;50(2):278-80.Full text Abstract
975. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020 Jun 16;75(23):2950-73.Full text Abstract
976. Bilaloglu S, Aphinyanaphongs Y, Jones S, et al. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA. 2020 Aug 25;324(8):799-801.Full text Abstract
977. Woller SC, de Wit K, Robert-Ebadi H, et al. A systematic review of biomarkers among hospitalized patients with COVID-19 predictive of venous thromboembolism: a communication from the Predictive and Diagnostic Variables Scientific and Standardization Committee of the ISTH. Res Pract Thromb Haemost. 2022 Aug;6(6):e12786.Full text Abstract
978. Wang C, Zhang H, Zhou M, et al. Prognosis of COVID-19 in patients with vein thrombosis: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2020 Oct;24(19):10279-85.Full text Abstract
979. Sabatino J, De Rosa S, Di Salvo G, et al. Impact of cardiovascular risk profile on COVID-19 outcome: a meta-analysis. PLoS One. 2020 Aug 14;15(8):e0237131.Full text Abstract
980. Rezel-Potts E, Douiri A, Sun X, et al. Cardiometabolic outcomes up to 12 months after COVID-19 infection: a matched cohort study in the UK. PLoS Med. 2022 Jul;19(7):e1004052.Full text Abstract
981. Jafari-Oori M, Moradian ST, Ebadi A, et al. Incidence of cardiac complications following COVID-19 infection: an umbrella meta-analysis study. Heart Lung. 2022 Jan 10;52:136-45.Full text Abstract
982. Changal K, Veria S, Mack S, et al. Myocardial injury in hospitalized COVID-19 patients: a retrospective study, systematic review, and meta-analysis. BMC Cardiovasc Disord. 2021 Dec 31;21(1):626.Full text Abstract
983. Tolu-Akinnawo O, Adusei Poku F, Elimihele T, et al. Acute cardiovascular complications of COVID-19: a systematic review. Cureus. 2023 May;15(5):e38576.Full text Abstract
984. Madjid M, Safavi-Naeini P, Solomon SD, et al. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020 Jul 1;5(7):831-40.Full text Abstract
985. Liu PP, Blet A, Smyth D, et al. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020 Jul 7;142(1):68-78.Full text Abstract
986. Gopinathannair R, Olshansky B, Chung MK, et al. Cardiac arrhythmias and autonomic dysfunction associated with COVID-19: a scientific statement from the American Heart Association. Circulation. 2024 Oct 14 [Epub ahead of print].Full text Abstract
987. Hendren NS, Drazner MH, Bozkurt B, et al. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020 Jun 9;141(23):1903-14.Full text Abstract
988. Li X, Pan X, Li Y, et al. Cardiac injury associated with severe disease or ICU admission and death in hospitalized patients with COVID-19: a meta-analysis and systematic review. Crit Care. 2020 Jul 28;24(1):468.Full text Abstract
989. Xiong TY, Redwood S, Prendergast B, et al. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020 May 14;41(19):1798-800.Full text Abstract
990. Xie Y, Xu E, Bowe B, et al. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022 Mar;28(3):583-90.Full text Abstract
991. Ng PY, Ip A, Ng AK, et al. Risk of acute kidney injury in critically-ill patients with COVID-19 compared with seasonal influenza: a retrospective cohort study. EClinicalMedicine. 2024 Apr;70:102535.Full text Abstract
992. Raina R, Mahajan ZA, Vasistha P, et al. Incidence and outcomes of acute kidney injury in COVID-19: a systematic review. Blood Purif. 2021 Jun 15:1-14.Full text Abstract
993. Cai X, Wu G, Zhang J, et al. Risk factors for acute kidney injury in adult patients with COVID-19: a systematic review and meta-analysis. Front Med (Lausanne). 2021 Dec 6;8:719472.Full text Abstract
994. Vivaldi G, Pfeffer PE, Talaei M, et al. Long-term symptom profiles after COVID-19 vs other acute respiratory infections: an analysis of data from the COVIDENCE UK study. EClinicalMedicine. 2023 Nov;65:102251.Full text Abstract
995. World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. Oct 2021 [internet publication].Full text
996. Subramanian A, Nirantharakumar K, Hughes S, et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat Med. 2022 Aug;28(8):1706-14.Full text Abstract
997. Greenhalgh T, Knight M, A’Court C, et al. Management of post-acute covid-19 in primary care. BMJ. 2020 Aug 11;370:m3026.Full text Abstract
998. Michelen M, Manoharan L, Elkheir N, et al. Characterising long COVID: a living systematic review. BMJ Glob Health. 2021 Sep;6(9):e005427.Full text Abstract
999. Zhang X, Wang F, Shen Y, et al. Symptoms and health outcomes among survivors of COVID-19 infection 1 year after discharge from hospitals in Wuhan, China. JAMA Netw Open. 2021 Sep 1;4(9):e2127403.Full text Abstract
1000. Truong DT, Dionne A, Muniz JC, et al. Clinically suspected myocarditis temporally related to COVID-19 vaccination in adolescents and young adults. Circulation. 2022 Feb;145(5):345-56.Full text Abstract
1001. Gundry SR. Abstract 10712: MRNA COVID vaccines dramatically increase endothelial inflammatory markers and ACS risk as measured by the PULS cardiac test: a warning. Circulation. 2021 Nov 16;144 (Suppl 1):A10712.Full text
1002. Pillay J, Gaudet L, Wingert A, et al. Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following covid-19 vaccination: living evidence syntheses and review. BMJ. 2022 Jul 13;378:e069445.Full text Abstract
1003. Hulscher N, Hodkinson R, Makis W, et al. Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis. ESC Heart Fail. 2024 Jan 14 [Epub ahead of print].Full text Abstract
1004. Patone M, Mei XW, Handunnetthi L, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med. 2022 Feb;28(2):410-22.Full text Abstract
1005. European Medicines Agency. COVID-19 vaccines safety update: 17 June 2022. Jun 2022 [internet publication].Full text
1006. Hause AM, Baggs J, Marquez P, et al. COVID-19 vaccine safety in children aged 5-11 years: United States, November 3 – December 19, 2021. MMWR Morb Mortal Wkly Rep. 2021 Dec 31;70(5152):1755-60.Full text Abstract
1007. Hause AM, Baggs J, Marquez P, et al. Safety monitoring of Pfizer-BioNTech COVID-19 vaccine booster doses among children aged 5-11 years: United States, May 17 - July 31, 2022. MMWR Morb Mortal Wkly Rep. 2022 Aug 19;71(33):1047-51.Full text Abstract
1008. Lane S, Yeomans A, Shakir S. Systematic review of spontaneous reports of myocarditis and pericarditis in transplant recipients and immunocompromised patients following COVID-19 mRNA vaccination. BMJ Open. 2022 Jul 1;12(7):e060425.Full text Abstract
1009. Alami A, Krewski D, Farhat N, et al. Risk of myocarditis and pericarditis in mRNA COVID-19-vaccinated and unvaccinated populations: a systematic review and meta-analysis. BMJ Open. 2023 Jun 20;13(6):e065687.Full text Abstract
1010. UK Health Security Agency. Myocarditis and pericarditis after COVID-19 vaccination: clinical management guidance for healthcare professionals. Jan 2023 [internet publication].Full text
1011. Matar RH, Mansour R, Nakanishi H, et al. Clinical characteristics of patients with myocarditis following COVID-19 mRNA vaccination: a systematic review and meta-analysis. J Clin Med. 2022 Aug 3;11(15):4521.Full text Abstract
1012. Kracalik I, Oster ME, Broder KR, et al. Outcomes at least 90 days since onset of myocarditis after mRNA COVID-19 vaccination in adolescents and young adults in the USA: a follow-up surveillance study. Lancet Child Adolesc Health. 2022 Nov;6(11):788-98.Full text Abstract
1013. Cho JY, Kim KH, Lee N, et al. COVID-19 vaccination-related myocarditis: a Korean nationwide study. Eur Heart J. 2023 Jun 25;44(24):2234-43.Full text Abstract
1014. Buchan SA, Seo CY, Johnson C, et al. Epidemiology of myocarditis and pericarditis following mrna vaccination by vaccine product, schedule, and interdose interval among adolescents and adults in Ontario, Canada. JAMA Netw Open. 2022 Jun 1;5(6):e2218505.Full text Abstract
1015. Li G, Yang Y, Gao D, et al. Is liver involvement overestimated in COVID-19 patients? A meta-analysis. Int J Med Sci. 2021;18(5):1285-96.Full text Abstract
1016. Radivojevic A, Abu Jad AA, Ravanavena A, et al. A systematic review of SARS-CoV-2-associated hepatic dysfunction and the impact on the clinical outcome of COVID-19. Cureus. 2022 Jul;14(7):e26852.Full text Abstract
1017. Bzeizi K, Abdulla M, Mohammed N, et al. Effect of COVID-19 on liver abnormalities: a systematic review and meta-analysis. Sci Rep. 2021 May 19;11(1):10599.Full text Abstract
1018. Alqahtani SA, Schattenberg JM. Liver injury in COVID-19: the current evidence. United European Gastroenterol J. 2020 Jun;8(5):509-19.Full text Abstract
1019. Sodeifian F, Seyedalhosseini ZS, Kian N, et al. Drug-induced liver injury in COVID-19 patients: a systematic review. Front Med (Lausanne). 2021 Sep 20;8:731436.Full text Abstract
1020. Wong GL, Wong VW, Thompson A, et al. Management of patients with liver derangement during the COVID-19 pandemic: an Asia-Pacific position statement. Lancet Gastroenterol Hepatol. 2020 Aug;5(8):776-87.Full text Abstract
1021. Guerrero JI, Barragán LA, Martínez JD, et al. Central and peripheral nervous system involvement by COVID-19: a systematic review of the pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. BMC Infect Dis. 2021 Jun 2;21(1):515.Full text Abstract
1022. Ali SS, Mumtaz A, Qamar MA, et al. New-onset Parkinsonism as a Covid-19 infection sequela: a systematic review and meta-analysis. Ann Med Surg (Lond). 2022 Aug;80:104281.Full text Abstract
1023. Williams LD, Zis P. COVID-19-related burning eye syndrome and burning mouth syndrome: a systematic review and meta-analysis. Pain Ther. 2023 Mar 14;1-10.Full text Abstract
1024. Favas TT, Dev P, Chaurasia RN, et al. Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurol Sci. 2020 Dec;41(12):3437-70.Full text Abstract
1025. Sullivan BN, Fischer T. Age-associated neurological complications of COVID-19: a systematic review and meta-analysis. Front Aging Neurosci. 2021 Aug 2;13:653694.Full text Abstract
1026. Chua TH, Xu Z, King NKK. Neurological manifestations in COVID-19: a systematic review and meta-analysis. Brain Inj. 2020 Oct 19:1-20. Abstract
1027. Kubota T, Kuroda N. Exacerbation of neurological symptoms and COVID-19 severity in patients with preexisting neurological disorders and COVID-19: a systematic review. Clin Neurol Neurosurg. 2020 Nov 1;106349.Full text Abstract
1028. Lu Y, Li X, Geng D, et al. Cerebral micro-structural changes in COVID-19 patients: an MRI-based 3-month follow-up study. EClinicalMedicine. 2020 Aug;25:100484.Full text Abstract
1029. Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022 Oct;9(10):815-27.Full text Abstract
1030. LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the United States for COVID-19 or multisystem inflammatory syndrome. JAMA Neurol. 2021 May 1;78(5):536-47.Full text Abstract
1031. Nagraj S, Varrias D, Hernandez Romero G, et al. Incidence of stroke in randomized trials of COVID-19 therapeutics: a systematic review and meta-analysis. Stroke. 2022 Nov;53(11):3410-8.Full text Abstract
1032. Lu Y, Zhao JJ, Ye MF, et al. The relationship between COVID-19's severity and ischemic stroke: a systematic review and meta-analysis. Neurol Sci. 2021 Jul;42(7):2645-51.Full text Abstract
1033. Yamakawa M, Kuno T, Mikami T, et al. Clinical characteristics of stroke with COVID-19: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2020 Aug 29;29(12):105288.Full text Abstract
1034. Nannoni S, de Groot R, Bell S, et al. Stroke in COVID-19: a systematic review and meta-analysis. Int J Stroke. 2021 Feb;16(2):137-49.Full text Abstract
1035. Valencia-Enciso N, Ortiz-Pereira M, Zafra-Sierra MP, et al. Time of stroke onset in coronavirus disease 2019 patients around the globe: a systematic review and analysis. J Stroke Cerebrovasc Dis. 2020 Sep 18;29(12):105325.Full text Abstract
1036. Tu TM, Seet CYH, Koh JS, et al. Acute ischemic stroke during the convalescent phase of asymptomatic COVID-2019 infection in men. JAMA Netw Open. 2021 Apr 1;4(4):e217498.Full text Abstract
1037. Ntaios G, Michel P, Georgiopoulos G, et al. Characteristics and outcomes in patients with COVID-19 and acute ischemic stroke: the global COVID-19 stroke registry. Stroke. 2020 Sep;51(9):e254-8.Full text Abstract
1038. Qureshi AI, Abd-Allah F, Alsenani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: report of an international panel. Int J Stroke. 2020 Jul;15(5):540-54.Full text Abstract
1039. Palaiodimou L, Stefanou MI, Katsanos AH, et al. Prevalence, clinical characteristics and outcomes of Guillain-Barré syndrome spectrum associated with COVID-19: a systematic review and meta-analysis. Eur J Neurol. 2021 Oct;28(10):3517-29.Full text Abstract
1040. Abu-Rumeileh S, Abdelhak A, Foschi M, et al. Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J Neurol. 2021 Apr;268(4):1133-70.Full text Abstract
1041. Censi S, Bisaccia G, Gallina S, et al. Guillain-Barré syndrome and COVID-19 vaccination: a systematic review and meta-analysis. J Neurol. 2024 Mar;271(3):1063-71.Full text Abstract
1042. Siow I, Lee KS, Zhang JJY, et al. Encephalitis as a neurological complication of COVID-19: a systematic review and meta-analysis of incidence, outcomes, and predictors. Eur J Neurol. 2021 Oct;28(10):3491-502.Full text Abstract
1043. Nabizadeh F, Balabandian M, Sodeifian F, et al. Autoimmune encephalitis associated with COVID-19: a systematic review. Mult Scler Relat Disord. 2022 Apr 6;62:103795.Full text Abstract
1044. Brown RL, Benjamin L, Lunn MP, et al. Pathophysiology, diagnosis, and management of neuroinflammation in covid-19. BMJ. 2023 Aug 18;382:e073923.Full text Abstract
1045. Hayek SS, Brenner SK, Azam TU, et al. In-hospital cardiac arrest in critically ill patients with covid-19: multicenter cohort study. BMJ. 2020 Sep 30;371:m3513.Full text Abstract
1046. Khan DSA, Hamid LR, Ali A, et al. Differences in pregnancy and perinatal outcomes among symptomatic versus asymptomatic COVID-19-infected pregnant women: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2021 Dec 1;21(1):801.Full text Abstract
1047. Deng J, Ma Y, Liu Q, et al. Association of infection with different SARS-CoV-2 variants during pregnancy with maternal and perinatal outcomes: a systematic review and meta-analysis. Int J Environ Res Public Health. 2022 Nov 29;19(23):15932.Full text Abstract
1048. Sheikh J, Lawson H, Allotey J, et al. Global variations in the burden of SARS-CoV-2 infection and its outcomes in pregnant women by geographical region and country's income status: a meta-analysis. BMJ Glob Health. 2022 Nov;7(11):e010060.Full text Abstract
1049. Simbar M, Nazarpour S, Sheidaei A. Evaluation of pregnancy outcomes in mothers with COVID-19 infection: a systematic review and meta-analysis. J Obstet Gynaecol. 2023 Dec;43(1):2162867.Full text Abstract
1050. Sun S, Savitz DA, Wellenius GA. Changes in adverse pregnancy outcomes associated with the COVID-19 pandemic in the United States. JAMA Netw Open. 2021 Oct 1;4(10):e2129560.Full text Abstract
1051. van Baar JAC, Kostova EB, Allotey J, et al. COVID-19 in pregnant women: a systematic review and meta-analysis on the risk and prevalence of pregnancy loss. Hum Reprod Update. 2024 Mar 1;30(2):133-52.Full text Abstract
1052. Huntley BJF, Mulder IA, Di Mascio D, et al. Adverse pregnancy outcomes among individuals with and without severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a systematic review and meta-analysis. Obstet Gynecol. 2021 Apr 1;137(4):585-96.Full text Abstract
1053. Sturrock S, Ali S, Gale C, et al. Neonatal outcomes and indirect consequences following maternal SARS-CoV-2 infection in pregnancy: a systematic review. BMJ Open. 2023 Mar 15;13(3):e063052.Full text Abstract
1054. Stowe J, Smith H, Thurland K, et al. Stillbirths during the COVID-19 pandemic in England, April-June 2020. JAMA. 2021 Jan 5;325(1):86-7.Full text Abstract
1055. DeSisto CL, Wallace B, Simeone RM, et al. Risk for stillbirth among women with and without COVID-19 at delivery hospitalization: United States, March 2020 – September 2021. MMWR Morb Mortal Wkly Rep. 2021 Nov 26;70(47):1640-5.Full text Abstract
1056. Magnus MC, Örtqvist AK, Urhoj SK, et al. Infection with SARS-CoV-2 during pregnancy and risk of stillbirth: a Scandinavian registry study. BMJ Public Health. 2023;1:e000314.Full text
1057. Smith ER, Oakley E, Grandner GW, et al. Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis. BMJ Glob Health. 2023 Jan;8(1):e009495.Full text Abstract
1058. Jeong Y, Kim MA. The coronavirus disease 2019 infection in pregnancy and adverse pregnancy outcomes: a systematic review and meta-analysis. Obstet Gynecol Sci. 2023 Jul;66(4):270-89.Full text Abstract
1059. Dhir SK, Kumar J, Meena J, et al. Clinical features and outcome of SARS-CoV-2 infection in neonates: a systematic review. J Trop Pediatr. 2021 Jul 2;67(3):fmaa059.Full text Abstract
1060. Allotey J, Chatterjee S, Kew T, et al. SARS-CoV-2 positivity in offspring and timing of mother-to-child transmission: living systematic review and meta-analysis. BMJ. 2022 Mar 16;376:e067696.Full text Abstract
1061. Meng X, Zhu K, Wang J, et al. Can SARS-CoV-2 positive pregnant women affect the hearing of their newborns: a systematic review. Am J Otolaryngol. 2022 Jun 2;43(5):103523.Full text Abstract
1062. Magnus MC, Söderling J, Örtqvist AK, et al. Covid-19 infection and vaccination during first trimester and risk of congenital anomalies: Nordic registry based study. BMJ. 2024 Jul 17;386:e079364.Full text Abstract
1063. Karakike E, Giamarellos-Bourboulis EJ, Kyprianou M, et al. Coronavirus disease 2019 as cause of viral sepsis: a systematic review and meta-analysis. Crit Care Med. 2021 Dec 1;49(12):2042-57.Full text Abstract
1064. Song JC, Wang G, Zhang W, et al. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Mil Med Res. 2020 Apr 20;7(1):19.Full text Abstract
1065. Zhou X, Cheng Z, Luo L, et al. Incidence and impact of disseminated intravascular coagulation in COVID-19 a systematic review and meta-analysis. Thromb Res. 2021 Feb 17;201:23-9.Full text Abstract
1066. Levi M, Iba T. COVID-19 coagulopathy: is it disseminated intravascular coagulation? Intern Emerg Med. 2021 Mar;16(2):309-12.Full text Abstract
1067. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020 Jun 4;135(23):2033-40.Full text Abstract
1068. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020 May;18(5):1094-9.Full text Abstract
1069. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020 May;18(5):1023-6.Full text Abstract
1070. Azagew AW, Beko ZW, Ferede YM, et al. Global prevalence of COVID-19-induced acute respiratory distress syndrome: systematic review and meta-analysis. Syst Rev. 2023 Nov 13;12(1):212.Full text Abstract
1071. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. Pediatrics. 2020 Jun;145(6):e20200702.Full text Abstract
1072. Jain S, Khanna P, Sarkar S. Comparative evaluation of ventilator-associated pneumonia in critically ill COVID- 19 and patients infected with other corona viruses: a systematic review and meta-analysis. Monaldi Arch Chest Dis. 2021 Sep 28;92(2).Full text Abstract
1073. Singh A, Singh Y, Pangasa N, et al. Risk factors, clinical characteristics, and outcome of air leak syndrome in COVID-19: a systematic review. Indian J Crit Care Med. 2021 Dec;25(12):1434-45.Full text Abstract
1074. Que Y, Hu C, Wan K, et al. Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. Int Rev Immunol. 2021 Feb 22;1-14.Full text Abstract
1075. Qamar MA, Afzal SS, Dhillon RA, et al. A global systematic review and meta-analysis on the emerging evidence on risk factors, clinical characteristics, and prognosis of multisystem inflammatory syndrome in adults (MIS-A). Ann Med Surg (Lond). 2023 Sep;85(9):4463-75.Full text Abstract
1076. Abrams JY, Godfred-Cato SE, Oster ME, et al. Multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2: a systematic review. J Pediatr. 2020 Aug 5;226:45-54.Full text Abstract
1077. Royal College of Paediatrics and Child Health. Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS): national consensus management pathway. Sep 2020 [internet publication].Full text
1078. Yousaf AR, Cortese MM, Taylor AW, et al. Reported cases of multisystem inflammatory syndrome in children aged 12-20 years in the USA who received a COVID-19 vaccine, December, 2020, through August, 2021: a surveillance investigation. Lancet Child Adolesc Health. 2022 May;6(5):303-12.Full text Abstract
1079. Ouldali N, Bagheri H, Salvo F, et al. Hyper inflammatory syndrome following COVID-19 mRNA vaccine in children: a national post-authorization pharmacovigilance study. Lancet Reg Health Eur. 2022 Apr 29:100393.Full text Abstract
1080. Kildegaard H, Lund LC, Højlund M, et al. Risk of adverse events after covid-19 in Danish children and adolescents and effectiveness of BNT162b2 in adolescents: cohort study. BMJ. 2022 Apr 11;377:e068898.Full text Abstract
1081. Ward JL, Harwood R, Kenny S, et al. Pediatric hospitalizations and ICU admissions due to COVID-19 and pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 in England. JAMA Pediatr. 2023 Jul 31;177(9):947-55.Full text Abstract
1082. Yousaf AR, Lindsey KN, Wu MJ, et al. Notes from the field: surveillance for multisystem inflammatory syndrome in children - United States, 2023. MMWR Morb Mortal Wkly Rep. 2024 Mar 14;73(10):225-8.Full text Abstract
1083. Abbas Q, Ali H, Amjad F, et al. Clinical presentation, diagnosis and management of multisystem inflammatory syndrome in children (MIS-C): a systematic review. BMJ Paediatr Open. 2024 Jun 6;8(1):e002344. Abstract
1084. Rhedin S, Lundholm C, Horne A, et al. Risk factors for multisystem inflammatory syndrome in children: a population-based cohort study of over 2 million children. Lancet Reg Health Eur. 2022 Aug;19:100443.Full text Abstract
1085. Abrams JY, Oster ME, Godfred-Cato SE, et al. Factors linked to severe outcomes in multisystem inflammatory syndrome in children (MIS-C) in the USA: a retrospective surveillance study. Lancet Child Adolesc Health. 2021 May;5(5):323-31.Full text Abstract
1086. Shaiba LA, More K, Hadid A, et al. Multisystemic inflammatory syndrome in neonates: a systematic review. Neonatology. 2022 May 5:1-13.Full text Abstract
1087. Lopez L, Burgner D, Glover C, et al. Lower risk of multi-system inflammatory syndrome in children (MIS-C) with the omicron variant. Lancet Reg Health West Pac. 2022 Oct;27:100604.Full text Abstract
1088. Haghighi Aski B, Manafi Anari A, Abolhasan Choobdar F, et al. Cardiac abnormalities due to multisystem inflammatory syndrome temporally associated with Covid-19 among children: a systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2021 Mar 22:100764.Full text Abstract
1089. Tripathi AK, Pilania RK, Bhatt GC, et al. Acute kidney injury following multisystem inflammatory syndrome associated with SARS-CoV-2 infection in children: a systematic review and meta-analysis. Pediatr Nephrol. 2023 Feb;38(2):357-70.Full text Abstract
1090. Zou H, Lu J, Liu J, et al. Characteristics of pediatric multi-system inflammatory syndrome (PMIS) associated with COVID-19: a meta-analysis and insights into pathogenesis. Int J Infect Dis. 2021 Jan;102:319-26.Full text Abstract
1091. Tong T, Yao X, Lin Z, et al. Similarities and differences between MIS-C and KD: a systematic review and meta-analysis. Pediatr Rheumatol Online J. 2022 Dec 5;20(1):112.Full text Abstract
1092. Levy N, Koppel JH, Kaplan O, et al. Severity and incidence of multisystem inflammatory syndrome in children during 3 SARS-CoV-2 pandemic waves in Israel. JAMA. 2022 Jun 28;327(24):2452-4.Full text Abstract
1093. Henderson LA, Canna SW, Friedman KG, et al. American College of Rheumatology clinical guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: version 3. Arthritis Rheumatol. 2022 Apr;74(4):e1-20.Full text Abstract
1094. Davies P, du Pré P, Lillie J, et al. One-year outcomes of critical care patients post-COVID-19 multisystem inflammatory syndrome in children. JAMA Pediatr. 2021 Dec 1;175(12):1281-3.Full text Abstract
1095. Penner J, Abdel-Mannan O, Grant K, et al. 6-month multidisciplinary follow-up and outcomes of patients with paediatric inflammatory multisystem syndrome (PIMS-TS) at a UK tertiary paediatric hospital: a retrospective cohort study. Lancet Child Adolesc Health. 2021 Jul;5(7):473-82.Full text Abstract
1096. Bilotta C, Perrone G, Adelfio V, et al. COVID-19 vaccine-related thrombosis: a systematic review and exploratory analysis. Front Immunol. 2021 Nov 29;12:729251.Full text Abstract
1097. Waqar U, Ahmed S, Gardezi SMHA, et al. Thrombosis with thrombocytopenia syndrome after administration of AZD1222 or Ad26.COV2.S vaccine for COVID-19: a systematic review. Clin Appl Thromb Hemost. Jan-Dec 2021 Jan-Dec;27:10760296211068487.Full text Abstract
1098. Rizk JG, Gupta A, Sardar P, et al. Clinical characteristics and pharmacological management of COVID-19 vaccine-induced immune thrombotic thrombocytopenia with cerebral venous sinus thrombosis: a review. JAMA Cardiol. 2021 Dec 1;6(12):1451-60.Full text Abstract
1099. Hafeez MU, Ikram M, Shafiq Z, et al. COVID-19 vaccine-associated thrombosis with thrombocytopenia syndrome (TTS): a systematic review and post hoc analysis. Clin Appl Thromb Hemost. 2021 Jan-Dec;27:10760296211048815.Full text Abstract
1100. Dag Berild J, Bergstad Larsen V, Myrup Thiesson E, et al. Analysis of thromboembolic and thrombocytopenic events after the AZD1222, BNT162b2, and MRNA-1273 COVID-19 vaccines in 3 Nordic countries. JAMA Netw Open. 2022 Jun 1;5(6):e2217375.Full text Abstract
1101. Andrews NJ, Stowe J, Ramsay ME, et al. Risk of venous thrombotic events and thrombocytopenia in sequential time periods after ChAdOx1 and BNT162b2 COVID-19 vaccines: a national cohort study in England. Lancet Reg Health Eur. 2022 Feb;13:100260.Full text Abstract
1102. See I, Lale A, Marquez P, et al. Case series of thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: United States, December 2020 to August 2021. Ann Intern Med. 2022 Apr;175(4):513-22.Full text Abstract
1103. Pavord S, Scully M, Hunt BJ, et al. Clinical features of vaccine-induced immune thrombocytopenia and thrombosis. N Engl J Med. 2021 Oct 28;385(18):1680-9.Full text Abstract
1104. World Health Organization. Interim statement of the COVID-19 subcommittee of the WHO global advisory committee on vaccine safety on AstraZeneca COVID-19 vaccine. Apr 2021 [internet publication].Full text
1105. Palaiodimou L, Stefanou MI, Katsanos AH, et al. Cerebral venous sinus thrombosis and thrombotic events after vector-based COVID-19 vaccines: a systematic review and meta-analysis. Neurology. 2021 Nov 23;97(21):e2136-47. Abstract
1106. Sharifian-Dorche M, Bahmanyar M, Sharifian-Dorche A, et al. Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis post COVID-19 vaccination: a systematic review. J Neurol Sci. 2021 Aug 3;428:117607.Full text Abstract
1107. Salih F, Schönborn L, Kohler S, et al. Vaccine-induced thrombocytopenia with severe headache. N Engl J Med. 2021 Nov 25;385(22):2103-5.Full text Abstract
1108. Cascio Rizzo A, Giussani G, Agostoni EC. Ischemic stroke and vaccine-induced immune thrombotic thrombocytopenia following COVID-19 vaccine: a case report with systematic review of the literature. Cerebrovasc Dis. 2022 May 5:1-13. Abstract
1109. Kolahchi Z, Khanmirzaei M, Mowla A. Acute ischemic stroke and vaccine-induced immune thrombotic thrombocytopenia post COVID-19 vaccination; a systematic review. J Neurol Sci. 2022 Jun 20;439:120327.Full text Abstract
1110. British Society for Haematology. Guidance from the expert haematology panel (EHP) on Covid-19 vaccine-induced immune thrombocytopenia and thrombosis (VITT). Sep 2021 [internet publication].Full text
1111. American Society of Hematology. Vaccine-induced immune thrombotic thrombocytopenia. May 2022 [internet publication].Full text
1112. Furie KL, Cushman M, Elkind MSV, et al; American Heart Association/American Stroke Association Stroke Council Leadership. Diagnosis and management of cerebral venous sinus thrombosis with vaccine-induced immune thrombotic thrombocytopenia. Stroke. 2021 Jul;52(7):2478-82.Full text Abstract
1113. International Society on Thrombosis and Haemostasis. The ISTH releases interim guidance on vaccine-induced immune thrombotic thrombocytopenia (VITT). Apr 2021 [internet publication].Full text
1114. World Health Organization. Guidance for clinical case management of thrombosis with thrombocytopenia syndrome (TTS) following vaccination to prevent coronavirus disease (COVID-19). Apr 2023 [internet publication].Full text
1115. Hwang J, Park SH, Lee SW, et al. Predictors of mortality in thrombotic thrombocytopenia after adenoviral COVID-19 vaccination: the FAPIC score. Eur Heart J. 2021 Oct 14;42(39):4053-63.Full text Abstract
1116. Mani A, Ojha V. Thromboembolism after COVID-19 vaccination: a systematic review of such events in 286 patients. Ann Vasc Surg. 2022 Aug;84:12-20.Full text Abstract
1117. Botton J, Jabagi MJ, Bertrand M, et al. Risk for myocardial infarction, stroke, and pulmonary embolism following COVID-19 vaccines in adults younger than 75 years in France. Ann Intern Med. 2022 Sep;175(9):1250-7.Full text Abstract
1118. Mitaka H, Kuno T, Takagi H, et al. Incidence and mortality of COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. Mycoses. 2021 Sep;64(9):993-1001.Full text Abstract
1119. Wang J, Yang Q, Zhang P, et al. Clinical characteristics of invasive pulmonary aspergillosis in patients with COVID-19 in Zhejiang, China: a retrospective case series. Crit Care. 2020 Jun 5;24(1):299.Full text Abstract
1120. Hurt W, Youngs J, Ball J, et al. COVID-19-associated pulmonary aspergillosis in mechanically ventilated patients: a prospective, multicentre UK study. Thorax. 2023 Dec 15;79(1):75-82.Full text Abstract
1121. Gioia F, Walti LN, Orchanian-Cheff A, et al. Risk factors for COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. Lancet Respir Med. 2024 Mar;12(3):207-16. Abstract
1122. Hong W, White PL, Backx M, et al. CT findings of COVID-19-associated pulmonary aspergillosis: a systematic review and individual patient data analysis. Clin Imaging. 2022 Oct;90:11-18.Full text Abstract
1123. Hoenigl M, Seidel D, Carvalho A, et al. The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. Lancet Microbe. 2022 Jul;3(7):e543-52.Full text Abstract
1124. Muthu V, Agarwal R, Patel A, et al. Definition, diagnosis, and management of COVID-19-associated pulmonary mucormycosis: Delphi consensus statement from the Fungal Infection Study Forum and Academy of Pulmonary Sciences, India. Lancet Infect Dis. 2022 Sep;22(9):e240-53.Full text Abstract
1125. Özbek L, Topçu U, Manay M, et al. COVID-19-associated mucormycosis: a systematic review and meta-analysis of 958 cases. Clin Microbiol Infect. 2023 Jun;29(6):722-31.Full text Abstract
1126. Muthu V, Rudramurthy SM, Chakrabarti A, et al. Epidemiology and pathophysiology of COVID-19-associated mucormycosis: India versus the rest of the world. Mycopathologia. 2021 Dec;186(6):739-54.Full text Abstract
1127. Dulski TM, DeLong M, Garner K, et al. Notes from the field: COVID-19-associated mucormycosis – Arkansas, July–September 2021. MMWR Morb Mortal Wkly Rep. 2021 Dec 17;70(50):1750-1.Full text Abstract
1128. Pal R, Singh B, Bhadada SK, et al. COVID-19-associated mucormycosis: an updated systematic review of literature. Mycoses. 2021 Dec;64(12):1452-9.Full text Abstract
1129. Singh AK, Singh R, Joshi SR, et al. Mucormycosis in COVID-19: a systematic review of cases reported worldwide and in India. Diabetes Metab Syndr. 2021 May 21;15(4):102146.Full text Abstract
1130. Indian Council of Medical Research. Evidence based advisory in the time of COVID-19 (screening, diagnosis and management of mucormycosis). 2021 [internet publication].Full text
1131. Arora N, Gudipati A, Kundu R, et al. Post-COVID-19 mucormycosis presenting as chest wall cellulitis with mediastinitis. Lancet Infect Dis. 2021 Nov;21(11):1611.Full text Abstract
1132. Kumar A. Mucormycosis in COVID-19 recovered patients. J Med Virol. 2022 Apr;94(4):1272-3.Full text Abstract
1133. Pruthi H, Muthu V, Bhujade H, et al. Pulmonary artery pseudoaneurysm in COVID-19-associated pulmonary mucormycosis: case series and systematic review of the literature. Mycopathologia. 2022 Feb;187(1):31-7.Full text Abstract
1134. Ostovan VR, Tabrizi R, Bazrafshan H, et al. Mortality-related risk factors for coronavirus disease (COVID-19)-associated mucormycosis: a systematic review and meta-analysis. Curr Fungal Infect Rep. 2022 Aug 11:1-11.Full text Abstract
1135. Arastehfar A, Carvalho A, van de Veerdonk FL, et al. COVID-19 associated pulmonary aspergillosis (CAPA): from immunology to treatment. J Fungi (Basel). 2020 Jun 24;6(2):91.Full text Abstract
1136. Prestel C, Anderson E, Forsberg K, et al. Candida auris outbreak in a COVID-19 specialty care unit: Florida, July – August 2020. MMWR Morb Mortal Wkly Rep. 2021 Jan 15;70(2):56-7.Full text Abstract
1137. Gangneux JP, Dannaoui E, Fekkar A, et al. Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: the French multicentre MYCOVID study. Lancet Respir Med. 2022 Feb;10(2):180-90.Full text Abstract
1138. Wang F, Wang H, Fan J, et al. Pancreatic injury patterns in patients with COVID-19 pneumonia. Gastroenterology. 2020 Apr 1;159(1):367-70.Full text Abstract
1139. Mutneja HR, Bhurwal A, Arora S, et al. Acute pancreatitis in patients with COVID-19 is more severe and lethal: a systematic review and meta-analysis. Scand J Gastroenterol. 2021 Dec;56(12):1467-72. Abstract
1140. Yang F, Huang Y, Li T, et al. Prevalence and outcomes of acute pancreatitis in COVID-19: a meta-analysis. Gut. 2022 Jul;71(7):1451-3.Full text Abstract
1141. Aziz AA, Aziz MA, Saleem M, et al. Acute pancreatitis related to COVID-19 infection: a systematic review and analysis of data. Cureus. 2022 Aug;14(8):e28380.Full text Abstract
1142. Gubatan J, Levitte S, Patel A, et al. Prevalence, risk factors and clinical outcomes of COVID-19 in patients with a history of pancreatitis in Northern California. Gut. 2021 Feb;70(2):440-1.Full text Abstract
1143. Babajide OI, Ogbon EO, Adelodun A, et al. COVID-19 and acute pancreatitis: a systematic review. JGH Open. 2022 Apr;6(4):231-5.Full text Abstract
1144. Bhattacharjee S, Banerjee M. Immune thrombocytopenia secondary to COVID-19: a systematic review. SN Compr Clin Med. 2020 Sep 19:1-11.Full text Abstract
1145. Meftah E, Rahmati R, Zari Meidani F, et al. Subacute thyroiditis following COVID-19: a systematic review. Front Endocrinol (Lausanne). 2023 Apr 15;14:1126637.Full text Abstract
1146. Ganie MA, Rashid H, Qadir A, et al. Subacute thyroiditis in active COVID-19 infection: a report of two cases with a systematic review of the literature. Cureus. 2024 Jan;16(1):e52611.Full text Abstract
1147. Aemaz Ur Rehman M, Farooq H, Ali MM, et al. The association of subacute thyroiditis with COVID-19: a systematic review. SN Compr Clin Med. 2021 Apr 29:1-13.Full text Abstract
1148. Tutal E, Ozaras R, Leblebicioglu H. Systematic review of COVID-19 and autoimmune thyroiditis. Travel Med Infect Dis. 2022 Mar 18;47:102314.Full text Abstract
1149. El Moheb M, Naar L, Christensen MA, et al. Gastrointestinal complications in critically ill patients with and without COVID-19. JAMA. 2020 Sep 24;324(18):1899-901.Full text Abstract
1150. Ojha V, Mani A, Mukherjee A, et al. Mesenteric ischemia in patients with COVID-19: an updated systematic review of abdominal CT findings in 75 patients. Abdom Radiol (NY). 2021 Nov 10;1-38.Full text Abstract
1151. Keshavarz P, Rafiee F, Kavandi H, et al. Ischemic gastrointestinal complications of COVID-19: a systematic review on imaging presentation. Clin Imaging. 2020 Dec 8;73:86-95.Full text Abstract
1152. Patel S, Parikh C, Verma D, et al. Bowel ischemia in COVID-19: a systematic review. Int J Clin Pract. 2021 Oct 4:e14930.Full text Abstract
1153. Marasco G, Maida M, Morreale GC, et al. Gastrointestinal bleeding in COVID-19 patients: a systematic review with meta-analysis. Can J Gastroenterol Hepatol. 2021 Sep 1;2021:2534975.Full text Abstract
1154. Chen J, Hang Y. Characteristics, risk factors and outcomes of gastrointestinal hemorrhage in COVID-19 patients: a meta-analysis. Pak J Med Sci. 2021 Sep-Oct;37(5):1524-31.Full text Abstract
1155. Hussain N, Agarwala P, Iqbal K, et al. A systematic review of acute telogen effluvium, a harrowing post-COVID-19 manifestation. J Med Virol. 2022 Apr;94(4):1391-401.Full text Abstract
1156. Christensen RE, Jafferany M. Association between alopecia areata and COVID-19: a systematic review. JAAD Int. 2022 Jun;7:57-61.Full text Abstract
1157. Creta M, Sagnelli C, Celentano G, et al. SARS-CoV-2 infection affects the lower urinary tract and male genital system: a systematic review. J Med Virol. 2021 May;93(5):3133-42.Full text Abstract
1158. Haghpanah A, Masjedi F, Salehipour M, et al. Is COVID-19 a risk factor for progression of benign prostatic hyperplasia and exacerbation of its related symptoms? A systematic review. Prostate Cancer Prostatic Dis. 2021 May 18;1-12.Full text Abstract
1159. Xie Y, Mirzaei M, Kahrizi MS, et al. SARS-CoV-2 effects on sperm parameters: a meta-analysis study. J Assist Reprod Genet. 2022 Jul;39(7):1555-63.Full text Abstract
1160. Bao J, Guo Z, He J, et al. Semen parameters and sex hormones as affected by SARS-CoV-2 infection: a systematic review. Prog Urol. 2022 Dec;32(16):1431-9.Full text Abstract
1161. Ashonibare VJ, Ashonibare PJ, Akhigbe TM, et al. SARS-CoV-2 impairs male fertility by targeting semen quality and testosterone level: a systematic review and meta-analysis. PLoS One. 2024 Sep 9;19(9):e0307396.Full text Abstract
1162. Raschke RA, Agarwal S, Rangan P, et al. Discriminant accuracy of the SOFA score for determining the probable mortality of patients with COVID-19 pneumonia requiring mechanical ventilation. JAMA. 2021 Apr 13;325(14):1469-70.Full text Abstract
1163. George PM, Barratt SL, Condliffe R, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax. 2020 Nov;75(11):1009-16.Full text Abstract
1164. Shah AS, Wong AW, Hague CJ, et al. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalisations. Thorax. 2021 Apr;76(4):402-4.Full text Abstract
1165. Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis. Pulmonology. 2021 Jul-Aug;27(4):328-37.Full text Abstract
1166. Chen M, Liu J, Peng P, et al. Dynamic changes of pulmonary diffusion capacity in survivors of non-critical COVID-19 during the first six months. EClinicalMedicine. 2022 Jan;43:101255.Full text Abstract
1167. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020 Apr 7;369:m1328.Full text Abstract
1168. de Jong VMT, Rousset RZ, Antonio-Villa NE, et al. Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis. BMJ. 2022 Jul 12;378:e069881.Full text Abstract
1169. Cárdenas-Fuentes G, Bosch de Basea M, Cobo I, et al. Validity of prognostic models of critical COVID-19 is variable: a systematic review with external validation. J Clin Epidemiol. 2023 Jul;159:274-88.Full text Abstract
1170. Centers for Disease Control and Prevention. Animals and COVID-19. Apr 2023 [internet publication].Full text
1171. Silva MJA, Santana DS, Lima MBM, et al. Assessment of the risk impact of SARS-CoV-2 infection prevalence between cats and dogs in America and Europe: a systematic review and meta-analysis. Pathogens. 2024 Apr 12;13(4):314.Full text Abstract
1172. Salman D, Vishnubala D, Le Feuvre P, et al. Returning to physical activity after covid-19. BMJ. 2021 Jan 8;372:m4721.Full text Abstract
1173. Daniels CJ, Rajpal S, Greenshields JT, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol. 2021 Sep 1;6(9):1078-87.Full text Abstract
1174. Lemes IR, Smaira FI, Ribeiro WJD, et al. Acute and post-acute COVID-19 presentations in athletes: a systematic review and meta-analysis. Br J Sports Med. 2022 Aug;56(16):941-7. Abstract
Use of this content is subject to our disclaimer