Table of Contents

Summary 3

Basics 4

- **Definition** 4
- **Epidemiology** 4
- **Aetiology** 5
- **Pathophysiology** 6

Prevention 7

- **Primary prevention** 7
- **Screening** 8
- **Secondary prevention** 8

Diagnosis 9

- **Case history** 9
- **Step-by-step diagnostic approach** 9
- **Risk factors** 14
- **History & examination factors** 14
- **Diagnostic tests** 17
- **Differential diagnosis** 20
- **Diagnostic criteria** 22

Treatment 24

- **Step-by-step treatment approach** 24
- **Treatment details overview** 26
- **Treatment options** 28
- **Emerging** 34

Follow up 35

- **Recommendations** 35
- **Complications** 36
- **Prognosis** 37

Guidelines 38

- **Diagnostic guidelines** 38
- **Treatment guidelines** 39

Online resources 41

References 42

Images 49

Disclaimer 50
The World Health Organization has declared a public health emergency of international concern and rates the global risk assessment as high.

The situation is evolving rapidly with case counts and deaths increasing each day.

Cases have been reported in at least 27 countries outside of China.

Person-to-person spread has been confirmed, but it is uncertain how easily the virus spreads between people.

Clinical trials and investigations to learn more about the virus, its origin, and how it affects humans are ongoing.
Definition

Coronavirus disease 2019 (COVID-19) is a potentially severe acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus was identified as the cause of an outbreak of pneumonia of unknown cause in Wuhan City, Hubei Province, China, in December 2019.[1] The clinical presentation is that of a respiratory infection with a symptom severity ranging from a mild common cold-like illness, to a severe viral pneumonia leading to acute respiratory distress syndrome that is potentially fatal.

The International Committee on Taxonomy of Viruses has confirmed SARS-CoV-2 as the name of the virus owing to the virus’s genetic similarity to the SARS-CoV virus, but taking into account that there may be differences in disease spectrum and transmission.[2] The World Health Organization has confirmed COVID-19 (a shortened version of coronavirus disease 2019) as the name of the disease that SARS-CoV-2 infection causes.[3] Prior to this, the virus and/or disease was known by various names including novel coronavirus (2019-nCoV), 2019-nCoV, or variations on this.

Epidemiology

The World Health Organization (WHO) was informed of 44 cases of pneumonia of unknown microbial aetiology associated with Wuhan City, Hubei Province, China on 31 December 2019. Most of the patients in the outbreak reported a link to a large seafood and live animal market (Huanan South China Seafood Market).[11] The WHO announced that a novel coronavirus had been detected in samples taken from these patients. Laboratory tests ruled out severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS)-CoV, influenza, avian influenza, and other common respiratory pathogens.[12] Since then, the outbreak has escalated rapidly, with the WHO declaring a public health emergency of international concern on 30 January 2020. The numbers of cases and deaths have surpassed the toll from the 2002-2003 outbreak of severe acute respiratory syndrome (SARS).

Cases in China

- The National Health Commission of the People’s Republic of China has reported over 75,000 confirmed cases and over 2200 deaths in China, with majority of cases in Hubei Province (as of 21 February 2020).[13]

Cases outside of China

- At least 1200 cases have been confirmed in the following 27 countries outside of China: Australia, Belgium, Cambodia, Canada, Finland, France, Germany, Egypt, India, Iran, Italy, Japan, Lebanon, Malaysia, Nepal, the Philippines, Russia, Singapore, South Korea, Spain, Sri Lanka, Sweden, Thailand, the United Arab Emirates, the UK, the US, and Vietnam. At least 8 deaths have been reported outside of mainland China (as of 21 February 2020).[14]
- At least 14 countries have reported cases of local transmission inside the reporting country: Australia, Egypt, France, Germany, Iran, Japan, Malaysia, Singapore, South Korea, Thailand, the United Arab Emirates, the UK, the US, and Vietnam (as of 21 February 2020). At least 634 cases have been reported on an international conveyance (a cruise ship) in Japan. [14]

These case counts are correct at the time of publication; however, they are increasing daily, and you should consult the case count resources below for updated information if necessary:
Early reports suggest that the infection is more likely to affect older males with underlying health conditions or comorbidities (e.g., chronic cardiovascular, cerebrovascular, endocrine, digestive, or respiratory disease). Severe, possibly fatal, complications may also be more common in these patients. The median age of patients ranges from 49 to 59 years.[4] [5] [6] [15] Infection in children is being reported much less commonly than among adults, and all cases so far have been in family clusters or in children who have a history of close contact with an infected patient.[7] [8]

Aetiology

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a previously unknown betacoronavirus that was discovered in bronchoalveolar lavage samples taken from clusters of patients who presented with pneumonia of unknown cause in Wuhan City, Hubei Province, China, in December 2019.[1] SARS-CoV-2 belongs to the Sarbecovirus subgenus of the Coronaviridae family, and is the seventh coronavirus known to infect humans. The virus has been found to be similar to severe acute respiratory syndrome (SARS)-like coronaviruses from bats, but it is distinct from SARS-CoV and Middle East respiratory syndrome (MERS)-CoV.[16] [17] The full genome has been determined and published in GenBank. [GenBank]

Coronaviruses are a large family of enveloped RNA viruses, some of which cause illness in people (e.g., common cold, SARS, MERS), and others that circulate among mammals (e.g., bats, camels) and birds. Rarely, animal coronaviruses can spread to humans and subsequently spread between people, as was the case with SARS and MERS.

A majority of patients in the initial stages of this outbreak reported a link to the Huanan South China Seafood Market, a live animal or ‘wet’ market, suggesting a zoonotic origin of the virus.[4] [5] [15] While the potential animal reservoir and intermediary host(s) are unknown at this point, studies suggest they may derive from a recombinant virus between the bat coronavirus and an origin-unknown coronavirus; however, this is yet to be confirmed.[16] [17] [18] [19]

Transmission dynamics of the virus are currently unknown and the situation is evolving. Person-to-person spread has been confirmed in community and healthcare settings in China and other countries.[14] An initial assessment of the transmission dynamics in the first 425 confirmed cases found that 55% of cases before 1 January 2020 were linked to the Huanan South China Seafood Market, whereas only 8.6% of cases after this date were linked to the market. This confirms that person-to-person spread occurred among close contacts since the middle of December 2019, including infections in healthcare workers. One study of a family cluster of five patients in Shenzhen who had a history of travel to Wuhan City (with one other family member who did not travel to Wuhan City) found that person-to-person spread is possible in both hospital and family settings.[15] Nosocomial transmission in healthcare workers and patients has been reported in 41% of patients in one case series.[6]
It is uncertain how easily the virus spreads between people, but transmission in chains involving several links is increasingly recognised. Similar to SARS and MERS, it is thought that human transmission occurs via respiratory droplets produced when a person sneezes or coughs.[20] The contribution to transmission by the presence of the virus in other body fluids is unknown; however, the virus has been detected in blood, and faecal transmission may also be possible.[21] [22] The virus has also been detected in saliva.[23]

An early report of of transmission from an asymptomatic contact in Germany has been criticised.[24] [25] However, there is mounting evidence that spread from asymptomatic contacts can occur and has been observed in endemic areas. Similarly, anecdotal reports suggest that some people can act as superspreaders early in the course of their infection. These individuals can pass the infection on to large numbers of contacts, including healthcare workers. This phenomenon is well documented for infections such as SARS and Ebola virus infection, and more recently with MERS.[26] [27] Some of these individuals are also supershedders of virus, but the reasons underlying superspreader events are often more complex than just excess virus shedding and can include a variety of behavioural and environmental factors.[26]

It is unknown whether perinatal transmission or transmission via breastfeeding is possible, but based on data from the SARS and MERS outbreaks this is unlikely.[7] Retrospective reviews of pregnant women with COVID-19 found that there is no evidence for intrauterine infection caused by vertical transmission in women who develop the infection late in pregnancy. However, there is currently a lack of data about the risk of transmission to the newborn during vaginal delivery.[28] [29]

Pathophysiology

Current estimates of the incubation period range from 1 to 14 days, according to the World Health Organization and the US Centers for Disease Control and Prevention.[30] [31] The median incubation period has been estimated to be 5 days.[15] Transmission may be possible during the incubation period.[32]

Preliminary reports suggest that the reproductive number (R₀), the number of people who acquire the infection from an infected person, is approximately 2.2.[15] [33] However, as the situation is still evolving, the R₀ may actually be higher or lower.

While the pathophysiology of this condition is currently unknown, a structural analysis suggests that the virus may be able to bind to the angiotensin-converting enzyme-2 receptor in humans, which suggests that it may have a similar pathogenesis to SARS.[17]

High viral loads have been detected in nasal and throat swabs soon after symptom onset, and it is thought that the viral shedding pattern may be similar to that of patients with influenza. An asymptomatic patient was found to have a similar viral load compared with symptomatic patients.[34]
Primary prevention

General prevention measures

- The only way to prevent infection is to avoid exposure to the virus and people should be advised to: [37] [38]
 - Wash hands often with soap and water or an alcohol-based hand sanitiser and avoid touching the eyes, nose, and mouth with unwashed hands
 - Avoid close contact with people (i.e., maintain a distance of at least 1 metre [3 feet]), particularly those who have a fever or are coughing or sneezing
 - Practice respiratory hygiene (i.e., cover mouth and nose when coughing or sneezing, discard tissue immediately in a closed bin, and wash hands)
 - Seek medical care early if they have a fever, cough, and difficulty breathing, and share their previous travel and contact history with their healthcare provider
 - Avoid direct unprotected contact with live animals and surfaces in contact with live animals when visiting live markets in affected areas
 - Avoid the consumption of raw or undercooked animal products, and handle raw meat, milk, or animal organs with care as per usual good food safety practices.

- [WHO: coronavirus disease (COVID-19) advice for the public]

Medical masks

- The World Health Organization (WHO) does not recommend that people wear a medical mask in community settings if they do not have respiratory symptoms as there is no evidence available on its usefulness to protect people who are not ill. However, masks may be worn in some countries according to local cultural habits. Individuals with fever and/or respiratory symptoms are advised to wear a mask, particularly in endemic areas.[39]

- It is mandatory to wear a medical mask in public in certain areas of China, and local guidance should be consulted for more information.

- [BMJ: facemasks for the prevention of infection in healthcare and community settings]

Screening and quarantine

- People travelling from areas with a high risk of infection may be screened using questionnaires about their travel, contact with ill persons, symptoms of infection, and/or measurement of their temperature. Combined screening of airline passengers on exit from an affected area and on arrival elsewhere has been relatively ineffective when used for other infections such as Ebola virus infection, and has been modelled to miss up to 50% of cases of COVID-19, particularly those with no symptoms during an incubation period, which may exceed 10 days.[40] Symptom-based screening processes have been reported to be ineffective in detecting SARS-CoV-2 infection in a small number of patients who were later found to have evidence of SARS-CoV-2 in a throat swab.[41]

- Enforced quarantine has been used in some countries to isolate easily identifiable cohorts of people at potential risk of recent exposure (e.g., groups evacuated by aeroplane from affected areas, or groups on cruise ships with infected people on board). The psychosocial effects of enforced quarantine may have long-lasting repercussions.[42]

Vaccine
• There is currently no vaccine available. Vaccines are in development, but it may take up to 12 months before a vaccine is available.[43]

Screening

Management of contacts

People who may have been exposed to individuals with suspected COVID-19 (including healthcare workers) should be advised to monitor their health for 14 days from the last day of possible contact, and seek immediate medical attention if they develop any symptoms, particularly fever, respiratory symptoms such as coughing or shortness of breath, or diarrhoea.[62]

Some people may be put into voluntary or compulsory quarantine depending on the guidance from local health authorities.

Screening of travellers

Exit screening is advised for areas with ongoing transmission and involves checking for signs and symptoms (fever and cough) and interviewing passengers with respiratory infection symptoms leaving the affected areas in regards to potential exposure to high-risk contacts or to the presumed animal source.[63]

Entry screening may detect exported symptomatic cases; however, it may miss patients who are incubating the disease or those who are concealing symptoms, and so it is important to also disseminate risk communication materials to raise awareness and encourage health-seeking behaviour. Several countries are actively performing entry screening according to local protocols.[63]

Some people may be put into voluntary or compulsory quarantine depending on the guidance from local health authorities.

Secondary prevention

Early recognition of new cases is the cornerstone of prevention of transmission. Immediately isolate all suspected and confirmed cases and implement recommended infection prevention and control procedures according to local protocols, including standard precautions at all times, and contact, droplet, and airborne precautions while the patient is symptomatic.[44] Report all suspected and confirmed cases to your local health authorities.

Detailed guidance on infection prevention and control measures are available from the World Health Organization and the Centers for Disease Control and Prevention:

• [WHO: infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected]
• [CDC: interim infection prevention and control recommendations for patients with confirmed 2019 novel coronavirus (2019-nCoV) or persons under investigation for 2019-nCoV in healthcare settings]
Case history

Case history #1

A 30-year-old man presents to his general practitioner on 14 January 2020 with a bad cough. He has had the cough for 4 days and now feels a little short of breath. He also has a headache and reports that his muscles ache. On examination, his pulse is 100 bpm and his temperature is 38.5°C (101.3°F). The patient reports that he returned from a business trip in mainland China 6 days ago.

Case history #2

A 61-year-old man presents to hospital on 3 February 2020 with fever, cough, and difficulty breathing. He also reports feeling very tired and unwell. He has a history of congestive heart failure, which is controlled with medication. On examination, his pulse is 120 bpm and his temperature is 38.7°C (101.6°F). Chest x-ray shows bilateral lung infiltrates. He is admitted to hospital in an isolation room and is started on oxygen, intravenous fluids, empirical antibiotics, and paracetamol. Later that day, he tests positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on real-time reverse transcriptase polymerase chain reaction testing. The patient develops respiratory distress 7 days after admission and is started on mechanical ventilation.

Other presentations

Other non-specific mild symptoms may include anorexia, confusion, dizziness, sore throat, rhinorrhoea, and sputum production. Some patients may present with chest pain or haemoptysis. Gastrointestinal symptoms such as diarrhoea, nausea, vomiting, and abdominal pain appear to be less common, but have also been the initial presenting symptoms in up to 10% of patients.[4] [5] [6] Some patients may be minimally symptomatic or asymptomatic, especially children.[7] [8] [9]

Based on early data, approximately 20% of symptomatic patients progress to moderate-to-severe illness, although this figure may change as the situation evolves.[10] Patients with severe illness may have signs and symptoms of viral pneumonia, or complications including acute distress syndrome, acute cardiac injury, arrhythmias, acute kidney injury, secondary infection, sepsis, or shock.[4] [5] [6]

Atypical presentations may occur as the full spectrum of clinical illness is yet to be characterised.

Step-by-step diagnostic approach

Early recognition and rapid diagnosis are essential to prevent transmission and provide supportive care in a timely manner. Have a high index of clinical suspicion for COVID-19 in all patients who present with fever and/or respiratory symptoms and who report a travel history to an affected area or close contact with a suspected or confirmed case in the 14 days prior to symptom onset. Evaluation should be performed according to pneumonia severity indexes and sepsis guidelines (if sepsis is suspected) in all patients with severe illness.

There is limited information available to characterise the spectrum of clinical illness. Much of the information in this section is based on early evidence, analysis of case series and reports, and data from previous
COVID-19

betacoronavirus infections such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). You should consult local guidance for further detailed information as the situation is evolving rapidly.

Infection prevention and control

Triage all patients on admission and immediately isolate all suspected and confirmed cases in an area separate from other patients. Implement appropriate infection prevention and control procedures. Screening questionnaires may be helpful. Report all suspected and confirmed cases to your local health authorities.

The World Health Organization (WHO) recommends the following basic principles:[44]

- Immediately isolate all suspected cases in an area that is separate from other patients
- Implement standard precautions at all times:
 - Practice hand and respiratory hygiene
 - Offer a medical mask to patients who can tolerate one
 - Wear personal protective equipment
 - Prevent needlestick and sharps injury
 - Practice safe waste management, environmental cleaning, and sterilisation of patient care equipment and linen
- Implement additional contact and droplet precautions until the patient is asymptomatic:
 - Place patients in adequately ventilated single rooms; when single rooms are not available, place all suspected cases together in the same ward
 - Wear a medical mask, gloves, an appropriate gown, and eye/facial protection (e.g., goggles or a face shield)
 - Use single-use or disposable equipment
 - Consider limiting the number of healthcare workers, family members, and visitors in contact with the patient, ensuring optimal patient care and psychosocial support for the patient
 - Consider placing patients in negative pressure rooms, if available
 - Implement airborne precautions when performing aerosol-generating procedures
 - All specimens collected for laboratory investigations should be regarded as potentially infectious.

It is important to disinfect inanimate surfaces in the surgery or hospital as patients may touch and contaminate surfaces such as door handles and desktops.[45]

Detailed guidance on infection prevention and control procedures are available from the WHO and the Centers for Disease Control and Prevention (CDC):
COVID-19 Diagnosis

- [WHO: infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected]
- [CDC: interim infection prevention and control recommendations for patients with confirmed coronavirus disease 2019 (COVID-19) or persons under investigation for COVID-19 in healthcare settings]

History

Take a detailed history to ascertain the level of risk for COVID-19 and assess the possibility of other causes. Travel history is key; it is crucial for timely diagnosis and to prevent further transmission.

The diagnosis should be suspected in all patients with fever and/or symptoms of lower respiratory illness (e.g., cough, dyspnoea) who reside in, or have travelled to, mainland China (especially Hubei Province) or any other affected areas in the 14 days prior to symptom onset. Diagnosis should also be suspected in patients with fever and/or symptoms of lower respiratory illness (e.g., cough, dyspnoea) who report close contact with a suspected or confirmed case of COVID-19 in the 14 days prior to symptom onset.[46] [36]

Early reports suggest that the infection is more likely to affect older males with underlying health conditions or comorbidities (e.g., chronic cardiovascular, cerebrovascular, endocrine, digestive, or respiratory disease). Severe, possibly fatal, complications may also be more common in these patients. The median age of patients ranges from 49 to 59 years.[4] [5] [6] [15] Infection in infants and children are being reported much less commonly than among adults, and all cases so far have been in family clusters or in children who have a history of close contact with an infected patient.[7] [8] [47]

[CDC: flowchart to identify and assess 2019 novel coronavirus]

Clinical presentation

The clinical presentation resembles viral pneumonia, and the severity of illness ranges from mild to severe. Most patients present with mild illness. Based on early data, approximately 20% of symptomatic patients may progress to severe illness, although this figure may change as the situation evolves.[10] Some patients may be minimally symptomatic or asymptomatic. Large-scale screening in non-endemic areas may pick up more of these types of patients. A milder clinical course has been reported in cases identified outside of China, with most patients being healthy adults.[48]

Based on an early analysis of case series, the most common symptoms are:[4] [5] [6]

- Fever
- Cough
- Dyspnoea
- Myalgia
- Fatigue.

Less common symptoms include:

- Anorexia
- Sputum production
- Sore throat
- Confusion
- Dizziness
- Headache
- Rhinorrhea
- Chest pain
- Haemoptysis
- Diarrhoea
- Nausea/vomiting
- Abdominal pain.

Approximately 90% of patients present with more than one symptom, and 15% of patients present with fever, cough, and dyspnoea.\(^5\) It appears that fewer patients have prominent upper respiratory tract or gastrointestinal symptoms compared with SARS, MERS, or influenza.\(^4\) \(^5\) Patients may present with nausea or diarrhoea 1 to 2 days prior to onset of fever and breathing difficulties.\(^6\) Most children present with mild symptoms, without fever or pneumonia. However, they may have signs of pneumonia on chest imaging despite having minimal or no symptoms.\(^7\) \(^8\) \(^9\) Retrospective reviews of pregnant women with COVID-19 found that the clinical characteristics in pregnant women were similar to those reported for non-pregnant adults.\(^28\) \(^29\) A retrospective case series of 62 patients in Zhejiang province found that the clinical features were less severe than those of the primary infected patients from Wuhan City, indicating that second-generation infection may result in milder infection. This phenomenon was also reported with MERS.\(^49\)

Perform a physical examination. Patients may be febrile (with or without chills/rigors) and have obvious cough and/or difficulty breathing. Auscultation of the chest may reveal inspiratory crackles, rales, and/or bronchial breathing in patients with pneumonia or respiratory distress. Patients with respiratory distress may have tachycardia, tachypnoea, or cyanosis accompanying hypoxia.

Initial investigations

Order the following investigations in all patients with severe illness:

- Pulse oximetry
- ABG (as indicated to detect hypercarbia or acidosis)
- FBC
- Comprehensive metabolic panel
- Coagulation screen
- Inflammatory markers (serum procalcitonin and C-reactive protein)
- Serum troponin
- Serum lactate dehydrogenase
• Serum creatine kinase.

The most common laboratory abnormalities in patients hospitalised with pneumonia include leukopenia (9% to 25%), lymphopenia (35% to 63%), leukocytosis (24% to 30%), and elevated liver transaminases (28% to 37%). Other abnormalities include neutrophilia, thrombocytopenia, decreased haemoglobin, decreased albumin, and renal impairment.[4] [5] [6]

Pulse oximetry may reveal low oxygen saturation (SpO₂ <90%).

Blood and sputum cultures

Collect blood and sputum specimens for culture in all patients to rule out other causes of lower respiratory tract infection, especially patients with an atypical epidemiological history.

Specimens should be collected prior to starting empirical antimicrobials if possible.

Molecular testing

Molecular testing is required to confirm the diagnosis (serological testing is not available as yet). Diagnostic tests should be performed according to guidance issued by local health authorities.

Perform real-time reverse-transcription polymerase chain reaction (RT-PCR) assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all patients with suspected infection:[50]

- Collect lower respiratory tract specimens (sputum, endotracheal aspirate, bronchoalveolar lavage) where possible and depending upon the patient’s condition
- Upper respiratory tract specimens (nasopharyngeal aspirate or combined nasopharyngeal and oropharyngeal swabs) may be used if lower respiratory tract specimens cannot be collected
- If initial testing is negative in a patient who is strongly suspected to have COVID-19, recollect specimens from multiple respiratory tract sites (nose, sputum, endotracheal aspirate) and retest
- Blood, urine, and stool specimens may also be used to monitor for the presence of the virus; however, sensitivity of diagnoses at these sites is uncertain.

Also rule out infection with other respiratory pathogens (e.g., influenza, atypical pathogens). Collect nasopharyngeal swabs for testing.

Imaging

All imaging procedures should be performed according to local infection prevention and control procedures to prevent transmission.

Chest x-ray

- Order a chest x-ray in all patients with suspected pneumonia. Unilateral lung infiltrates are found in 25% of patients, and bilateral lung infiltrates are found in 75% of patients.[4] [5] [51]

Computed tomography (CT) chest

- Consider ordering a CT scan of the chest. It is particularly helpful in patients with suspected pneumonia who have a normal chest x-ray in order to detect infiltrates with greater sensitivity.[51]
Evidence of viral pneumonia on CT may precede a positive RT-PCR result for SARS-CoV-2 in some patients. CT is the primary imaging modality in China.

- Nearly all patients in the initial cohort of 41 patients had bilateral multiple lobular and subsegmental areas of consolidation. However, multiple mottling and ground glass opacity was only identified in 14% of patients in another study. Small nodular ground glass opacities are the most common finding in children.

- In one retrospective case series, lung cavitation, discrete pulmonary nodules, pleural effusions, and lymphadenopathy were notably absent.

Risk factors

Strong

- **residence in/travel to affected area 14 days prior to symptom onset**
 - Diagnosis should be suspected in patients with fever and/or symptoms of lower respiratory illness (e.g., cough, dyspnoea) who reside in, or have traveled to mainland China (particularly Hubei Province), or any other affected areas in the 14 days prior to symptom onset.[35] [36]
 - [CDC: locations with confirmed 2019-nCoV cases]

- **close contact with infected individual**
 - Person-to-person spread has been confirmed in community and healthcare settings in China and other countries.[14] Diagnosis should be suspected in patients with fever and/or symptoms of lower respiratory illness (e.g., cough, dyspnoea) who report close contact with a suspected or confirmed case of COVID-19 in the 14 days prior to symptom onset.[35] [36]

- **older males with comorbidities**
 - Early reports suggest that the infection is more likely to affect older males with underlying health conditions or comorbidities (e.g., chronic cardiovascular, cerebrovascular, endocrine, digestive, or respiratory disease). Severe, possibly fatal, complications may also be more common in these patients. The median age of patients ranges from 49 to 59 years.[4] [5] [6] [15]

History & examination factors

Key diagnostic factors

fever (common)
 - Reported in 83% to 98% of patients in case series.[4] [5] [6]
 - Children may not present with fever.[7]
 - Patients may present with chills/rigors.
 - The course of fever is not fully understood yet.

cough (common)
 - Reported in 59% to 82% of patients in case series.[4] [5] [6]
 - Cough is usually dry.

dyspnoea (common)
COVID-19

Diagnosis

- Reported in 31% to 55% of patients in case series.[4] [5] [6]
- Median time from onset of symptoms to development of dyspnoea is 5 to 8 days.[4] [5] [6]

Other diagnostic factors

fatigue (common)
- Reported in 44% to 69% of patients in case series.[4] [6]
- Patients may also report malaise.

myalgia (common)
- Reported in 11% to 44% of patients in case series.[4] [5] [6]

anorexia (common)
- Reported in 40% of patients in case series.[6]

sputum production (common)
- Reported in 26% to 28% of patients in case series.[4] [6]

sore throat (common)
- Reported in 5% to 17% of patients in case series, and usually presents early in the clinical course.[5] [6]

confusion (uncommon)
- Reported in 9% of patients in case series.[5]

dizziness (uncommon)
- Reported in 9% of patients in case series.[6]

headache (uncommon)
- Reported in 6% to 8% of patients in case series.[4] [5] [6]

haemoptysis (uncommon)
- Reported in 5% of patients in case series.[4]

rhinorrhea (uncommon)
- Reported in 4% of patients in case series.[5]

chest pain (uncommon)
- Reported in 2% to 5% of patients in case series.[4] [5]
- May indicate pneumonia.

gastrointestinal symptoms (uncommon)
- Nausea, vomiting, and diarrhoea have been reported in 1% to 10% of patients in case series, although this may be underestimated.[4] [5] [6] One case series reported gastrointestinal symptoms in nearly 40% of patients.[59]
- Abdominal pain has been reported in 2% of patients in case series.[6]
- Patients may present with nausea or diarrhoea 1 to 2 days prior to onset of fever and breathing difficulties.[6]
bronchial breath sounds (uncommon)

- May indicate pneumonia.

tachypnoea (uncommon)

- May be present in patients with acute respiratory distress.

tachycardia (uncommon)

- May be present in patients with acute respiratory distress.

cyanosis (uncommon)

- May be present in patients with acute respiratory distress.

crackles/rales on auscultation (uncommon)

- May be present in patients with acute respiratory distress.
Diagnostic tests

1st test to order

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>pulse oximetry</td>
<td>may show low oxygen saturation (SpO₂ <90%)</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• Recommended in patients with respiratory distress and cyanosis.</td>
<td></td>
</tr>
<tr>
<td>ABG</td>
<td>may show low partial oxygen pressure</td>
</tr>
<tr>
<td>• Order in patients with severe illness as indicated to detect hypercarbia or acidosis.</td>
<td></td>
</tr>
<tr>
<td>• Recommended in patients with respiratory distress and cyanosis who have low oxygen saturation (SpO₂ <90%).</td>
<td></td>
</tr>
<tr>
<td>FBC</td>
<td>leukopenia; lymphopenia; leukocytosis</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• The most common laboratory abnormalities in patients hospitalised with pneumonia include leukopenia (9% to 25%), lymphopenia (35% to 63%), and leukocytosis (24% to 30%). Other abnormalities include neutrophilia, thrombocytopenia, and decreased haemoglobin.[4] [5] [6]</td>
<td></td>
</tr>
<tr>
<td>coagulation screen</td>
<td>elevated D-dimer; prolonged prothrombin time</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• The most common abnormalities are elevated D-dimer and prolonged prothrombin time.[4] [5] [6]</td>
<td></td>
</tr>
<tr>
<td>• Non-survivors had significantly higher D-dimer levels and longer prothrombin time and activated partial thromboplastin time compared with survivors in one study.[60]</td>
<td></td>
</tr>
<tr>
<td>comprehensive metabolic panel</td>
<td>elevated liver transaminases; decreased albumin; renal impairment</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• The most common laboratory abnormalities in patients hospitalised with pneumonia include elevated liver transaminases (28% to 37%). Other abnormalities include decreased albumin and renal impairment.[4] [5]</td>
<td></td>
</tr>
<tr>
<td>serum procalcitonin</td>
<td>may be elevated</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• May be elevated in patients with secondary bacterial infection.[4] [5]</td>
<td></td>
</tr>
<tr>
<td>serum C-reactive protein</td>
<td>may be elevated</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• May be elevated in patients with secondary bacterial infection.[4] [5]</td>
<td></td>
</tr>
<tr>
<td>serum lactate dehydrogenase</td>
<td>may be elevated</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• Elevated lactate dehydrogenase has been reported in 73% to 76% of patients.[4] [5]</td>
<td></td>
</tr>
<tr>
<td>• Indicates liver injury or lysis of blood erythrocytes.</td>
<td></td>
</tr>
<tr>
<td>serum creatine kinase</td>
<td>may be elevated</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• Elevated creatine kinase has been reported in 13% to 33% of patients.[4] [5]</td>
<td></td>
</tr>
<tr>
<td>• Indicates muscle or myocardium injury.</td>
<td></td>
</tr>
</tbody>
</table>
Diagnosis

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>serum troponin level</td>
<td>may be elevated</td>
</tr>
<tr>
<td>• Order in patients with severe illness.</td>
<td></td>
</tr>
<tr>
<td>• May be elevated in patients with cardiac injury.[4]</td>
<td></td>
</tr>
<tr>
<td>blood and sputum cultures</td>
<td>negative for bacterial infection</td>
</tr>
<tr>
<td>• Collect blood and sputum specimens for culture in all patients to rule out other causes of lower respiratory tract infection, especially patients with an atypical epidemiological history.</td>
<td></td>
</tr>
<tr>
<td>• Specimens should be collected prior to starting empirical antimicrobials if possible.</td>
<td></td>
</tr>
<tr>
<td>real-time reverse transcription polymerase chain reaction (RT-PCR)</td>
<td>positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA; negative for influenza A and B viruses and other respiratory pathogens</td>
</tr>
<tr>
<td>• Molecular testing is required to confirm the diagnosis.[50]</td>
<td></td>
</tr>
<tr>
<td>• Collect lower respiratory tract specimens (sputum, endotracheal aspirate, bronchoalveolar lavage) where possible and depending upon the patient’s condition.</td>
<td></td>
</tr>
<tr>
<td>• Upper respiratory tract specimens (nasopharyngeal aspirate or combined nasopharyngeal and oropharyngeal swabs) may be used if lower respiratory tract specimens cannot be collected.</td>
<td></td>
</tr>
<tr>
<td>• If initial testing is negative in a patient who is strongly suspected to have COVID-19, recollect specimens from multiple respiratory tract sites (nose, sputum, endotracheal aspirate) and retest.</td>
<td></td>
</tr>
<tr>
<td>• Blood, urine, and stool specimens may also be used to monitor for the presence of the virus.</td>
<td></td>
</tr>
<tr>
<td>• The US Food and Drug Administration has issued an emergency-use authorisation to enable emergency use of the US Center for Disease Control and Prevention (CDC)’s RT-PCR diagnostic panel, which allows testing at any CDC-qualified laboratory in the US.[61] This test is also available in many laboratories worldwide and testing should be done according to instructions from local health authorities.</td>
<td></td>
</tr>
<tr>
<td>• Collect nasopharyngeal swabs to rule out influenza and other respiratory infections.</td>
<td></td>
</tr>
<tr>
<td>chest x-ray</td>
<td>unilateral or bilateral lung infiltrates</td>
</tr>
<tr>
<td>• Order in all patients with suspected pneumonia.</td>
<td></td>
</tr>
<tr>
<td>• Unilateral lung infiltrates are found in 25% of patients, and bilateral lung infiltrates are found in 75% of patients.[4][5][51]</td>
<td></td>
</tr>
</tbody>
</table>
Other tests to consider

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>computed tomography (CT) chest</td>
<td>bilateral ground-glass opacity or consolidation</td>
</tr>
<tr>
<td>• Consider a CT scan of the chest. It is particularly helpful in patients with suspected pneumonia who have a normal chest x-ray in order to detect infiltrates with greater sensitivity.[51] [52] [53] [54] Evidence of viral pneumonia on CT may precede a positive RT-PCR result for SARS-CoV-2 in some patients.[55] CT is the primary imaging modality in China.[56] • Nearly all patients in the initial cohort of 41 patients had bilateral multiple lobular and subsegmental areas of consolidation.[4] However, multiple mottling and ground glass opacity was only identified in 14% of patients in another study.[5] Small nodular ground glass opacities are the most common finding in children.[57] • In one retrospective case series, lung cavitation, discrete pulmonary nodules, pleural effusions, and lymphadenopathy were notably absent.[58]</td>
<td></td>
</tr>
</tbody>
</table>
Differential diagnosis

<table>
<thead>
<tr>
<th>Condition</th>
<th>Differentiating signs / symptoms</th>
<th>Differentiating tests</th>
</tr>
</thead>
</table>
| Middle East respiratory syndrome (MERS) | • Lack of travel history to mainland China or other affected areas, or of close contact with an infected person in the 14 days prior to symptom onset.
 • Initial reports suggest that the clinical course of COVID-19 is less severe and the case fatality rate is lower compared with MERS (approximately 2% to 3% for COVID-19 versus 37% for MERS); however, there are no data to confirm this and the situation is rapidly evolving.[4]
 • Gastrointestinal symptoms and upper respiratory tract symptoms appear to be less common in COVID-19 based on early data.[4] [5] | • Reverse-transcriptase polymerase chain reaction (RT-PCR): positive for MERS-CoV viral RNA. |
| Severe acute respiratory syndrome (SARS) | • There have been no cases of SARS reported since 2004.
 • Lack of travel history to mainland China or other affected areas, or of close contact with an infected person in the 14 days prior to symptom onset.
 • Initial reports suggest that the clinical course of COVID-19 is less severe and the case fatality rate is lower compared with SARS (approximately 2% to 3% for COVID-19 versus 10% for SARS); however, there are no data to confirm this and the situation is rapidly evolving.[4]
 • Gastrointestinal symptoms and upper respiratory tract symptoms appear to be less common in COVID-19 based on early data.[4] [5] | • RT-PCR: positive for SARS-CoV viral RNA. |
| Community-acquired pneumonia | • Lack of travel history to mainland China or other affected areas, or of close contact with an infected person in the 14 days prior to symptom onset.
 • Initial reports suggest that the clinical course of COVID-19 is less severe and the case fatality rate is lower compared with SARS (approximately 2% to 3% for COVID-19 versus 10% for SARS); however, there are no data to confirm this and the situation is rapidly evolving.[4]
 • Gastrointestinal symptoms and upper respiratory tract symptoms appear to be less common in COVID-19 based on early data.[4] [5] | • Blood or sputum culture or molecular testing: positive for causative organism. |
<table>
<thead>
<tr>
<th>Condition</th>
<th>Differentiating signs / symptoms</th>
<th>Differentiating tests</th>
</tr>
</thead>
</table>
| COVID-19 | person in the 14 days prior to symptom onset.
• Differentiating COVID-19 from community-acquired respiratory tract infections is not possible from signs and symptoms. | |
| Influenza infection | • Lack of travel history to mainland China or other affected areas, or of close contact with an infected person in the 14 days prior to symptom onset.
• Differentiating COVID-19 from community-acquired respiratory tract infections is not possible from signs and symptoms. However, early reports suggest that sore throat is less common in COVID-19. [5] | • RT-PCR: positive for influenza A or B viral RNA. |
| Common cold | • Lack of travel history to mainland China or other affected areas, or of close contact with an infected person in the 14 days prior to symptom onset.
• Differentiating COVID-19 from community-acquired respiratory tract infections is not possible from signs and symptoms. However, early reports suggest that coryza and sore throat are less common in COVID-19. [5] | • RT-PCR: positive for causative organism, or negative for SARS-CoV-2 viral RNA. |
| Avian influenza A (H7N9) virus infection | • May be difficult to differentiate based on epidemiological history as avian influenza H7N9 is endemic in China.
• Close contact with infected birds (e.g., farmer or visitor to a live market in endemic areas), or living in an area when avian influenza is endemic.
• Early reports suggest that sore throat is less common in COVID-19. [5] | • RT-PCR: positive for H7-specific viral RNA. |
| Avian influenza A (H5N1) virus infection | • Lack of travel history to mainland China or other affected areas, or of close contact with an infected person in the 14 days prior to symptom onset.
• Differentiating COVID-19 from community-acquired respiratory tract infections is not possible from signs and symptoms. However, early reports suggest that coryza and sore throat are less common in COVID-19. [5] | • RT-PCR: positive for H51 viral RNA. |
<table>
<thead>
<tr>
<th>Condition</th>
<th>Differentiating signs / symptoms</th>
<th>Differentiating tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>contact with an infected person in the 14 days prior to symptom onset.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Close contact with infected birds (e.g., farmer or visitor to a live market in endemic areas), or living in an area when avian influenza is endemic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Early reports suggest that sore throat is less common in COVID-19.[5]</td>
<td></td>
</tr>
<tr>
<td>Other viral or bacterial respiratory infections</td>
<td>• Lack of travel history to mainland China or other affected areas, or of close contact with an infected person in the 14 days prior to symptom onset.</td>
<td>• Blood or sputum culture of molecular testing: positive for causative organism.</td>
</tr>
<tr>
<td></td>
<td>• Differentiating COVID-19 from community-acquired respiratory tract infections is not possible from signs and symptoms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adenovirus and Mycoplasma should be considered in clusters of pneumonia patients, especially in closed settings such as military camps and schools.</td>
<td></td>
</tr>
<tr>
<td>Pulmonary tuberculosis</td>
<td>• Consider diagnosis in endemic areas, especially in patients who are immunocompromised.</td>
<td>• Chest x-ray: fibronodular opacities in upper lobes with or without cavitation; atypical pattern includes opacities in middle or lower lobes, or hilar or paratracheal lymphadenopathy, and/or pleural effusion.</td>
</tr>
<tr>
<td></td>
<td>• History of symptoms is usually longer.</td>
<td>• Sputum acid-fast bacilli smear and sputum culture: positive.</td>
</tr>
<tr>
<td></td>
<td>• Presence of night sweats and weight loss may help to differentiate.</td>
<td>• Molecular testing: positive for Mycoplasma tuberculosis.</td>
</tr>
</tbody>
</table>

Diagnostic criteria

World Health Organization: case definitions for surveillance[35]

Suspect case
• A. Patients with severe acute respiratory infection (fever, cough, and requiring admission to hospital), AND with no other aetiology that fully explains the clinical presentation, AND a history of travel to or residence in China during the 14 days prior to symptom onset, OR

• B. Patients with any acute respiratory illness and at least one of the following during the 14 days prior to symptom onset:
 • Contact with a confirmed or probable case, or
 • Worked in or attended a healthcare facility where patients with confirmed or probable cases were being treated.

Probable case

• A suspect case for whom testing is inconclusive or is positive using a pancoronavirus assay, and without laboratory evidence of other respiratory pathogens.

Confirmed case

• A person with laboratory confirmation of infection, irrespective of signs and symptoms.

Centers for Disease Control and Prevention: criteria to guide evaluation of patients under investigation (PUI) for 2019-nCoV[36]

Patients in the US who meet the following criteria should be evaluated as a PUI:

• A. Fever or signs/symptoms of lower respiratory illness (e.g., cough or dyspnoea) AND any person, including healthcare workers, who has had close contact with a laboratory-confirmed case within 14 days of symptom onset, or

• B. Fever and signs/symptoms of lower respiratory illness (e.g., cough or dyspnoea) AND a history of travel from Hubei Province, China within 14 days of symptom onset, or

• C. Fever and signs/symptoms of lower respiratory illness (e.g., cough or dyspnoea) requiring hospitalisation AND a history of travel from mainland China within 14 days of symptom onset.

Fever may be subjective or confirmed. Close contact is defined as being within approximately 2 metres (6 feet) of a confirmed case for a prolonged period of time while not wearing personal protective equipment. Close contact is also defined as having direct contact with the infectious secretions of a case while not wearing personal protective equipment.

[CDC: criteria to guide evaluation of persons under investigation (PUI) for 2019-nCoV]
Step-by-step treatment approach

No specific treatments are known to be effective for COVID-19 yet; therefore, the mainstay of management is optimised supportive care to relieve symptoms and to support organ function in more severe illness. Patients should be managed in a hospital setting where possible; however, home care may be suitable for selected patients with mild illness. Much of the information in this section is based on early evidence, analysis of case series and reports, and data from previous betacoronavirus infections such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). You should consult local guidance for further detailed information as the situation is evolving rapidly.

Infection prevention and control

Immediately isolate all suspected or confirmed cases in an area separate from other patients. Implement appropriate infection prevention and control procedures. Report all suspected and confirmed cases to your local health authorities.

Detailed guidance on infection prevention and control procedures are available from the World Health Organization (WHO) and the US Centers for Disease Control and Prevention (CDC):

- [WHO: infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected]
- [CDC: interim infection prevention and control recommendations for patients with confirmed coronavirus disease 2019 (COVID-19) or persons under investigation for COVID-19 in healthcare settings]

Management of patients with pneumonia or comorbidities

Promptly admit patients with pneumonia or respiratory distress to an appropriate healthcare facility and start supportive care depending on the clinical presentation. The median time from onset of symptoms to hospital admission is reported to be approximately 7 days.[4] [6] Patients with impending or established respiratory failure should be admitted to an intensive care unit. Between 23% to 32% of hospitalised patients require intensive care for respiratory support.[4] [5] [6] However, this estimate may be lower based on current case counts. Symptomatic patients who no longer require hospitalisation may be considered for home care if suitable (see below).

Supportive therapies

- Oxygen: give supplemental oxygen at a rate of 5 L/minute to patients with severe acute respiratory infection and respiratory distress, hypoxaemia, or shock. Titrate flow rates to reach a target SpO₂ ≥90%.[64]
- Fluids: manage fluids conservatively in patients with severe acute respiratory infection when there is no evidence of shock as aggressive fluid resuscitation may worsen oxygenation.[64]
- Symptom relief: give an antipyretic/analgesic for the relief of fever and pain.[64]
- Antimicrobials: consider starting empirical antimicrobials in patients with suspected infection to cover other potential bacterial pathogens that may cause respiratory infection according to local protocols. Give within 1 hour of initial patient assessment for patients with suspected sepsis. Choice of empirical antimicrobials should be based on the clinical diagnosis, and
local epidemiology and susceptibility data. Consider treatment with a neuraminidase inhibitor until influenza is ruled out. De-escalate empirical therapy based on test results and clinical judgement.[64] Some patients with severe illness may require continued antimicrobial therapy once COVID-19 has been confirmed depending on the clinical circumstances.

Monitoring

- Monitor patients closely for signs of clinical deterioration, such as rapidly progressive respiratory failure and sepsis, and start general supportive care interventions as indicated (e.g., haemodialysis, vasopressor therapy, fluid resuscitation, ventilation, antimicrobials) as appropriate.[64]

Mechanical ventilation

- It is important to follow local infection prevention and control procedures to prevent transmission to healthcare workers. Endotracheal intubation should be performed by an experienced provider using airborne precautions.

- Intubation and mechanical ventilation are recommended in patients who are deteriorating and cannot maintain an SpO₂ ≥90% with oxygen therapy.[64] Some patients may develop severe hypoxic respiratory failure, requiring a high fraction of inspired oxygen, and high air flow rates to match inspiratory flow demand. Patients may also have increased work of breathing, demanding positive pressure breathing assistance.

- High-flow nasal oxygen and non-invasive ventilation are recommended in select patients. Mechanically ventilated patients with acute respiratory distress syndrome should receive a lung-protective, low tidal volume/low inspiratory pressure ventilation strategy. Those with persistent severe hypoxic failure should be considered for prone ventilation.[64]

- The risk of treatment failure is high in patients with non-acutely reversible conditions, and there is also concern about nosocomial transmission with open ventilation systems and suboptimal non-invasive face mask or nasal pillow seals. More research to define the balance of benefits and risks to patients and health workers is needed.

- Some patients may require extracorporeal membrane oxygenation (ECMO) according to availability and expertise.[64]

Management of patients without pneumonia or comorbidities

Although treatment in a hospital setting is preferred, sometimes inpatient care may not be available or may be considered unsafe, or the patient refuses to be hospitalised. Home care may be considered on a case-by-case basis.[65] The location of home care may depend on guidance from local health authorities as forced quarantine orders are being used in some countries.

Patients suitable for home care

- Mild symptoms only (e.g., low-grade fever, cough, fatigue, rhinorrhoea, sore throat).

- No warning signs (e.g., shortness of breath or difficulty breathing, haemoptysis, increased sputum production, gastrointestinal symptoms, mental status changes).

- No underlying health conditions.

Home infection prevention and control measures
Treatment

• Infection prevention and control procedures are still important during home care. Recommend patients use a single room and a single bathroom (if possible), minimise contact with other household members, and wear a surgical mask if contact is necessary.[65]

Supportive therapies

• Recommend symptomatic therapies such as an antipyretic/analgesic, and advise patients to keep hydrated but not to take too much fluid as this can worsen oxygenation.[65]

Monitoring

• Monitor patients closely and advise them to seek medical care if symptoms worsen as mild illness can rapidly progress to lower respiratory tract disease.

More detailed guidance on home care is available from the WHO and the CDC:

• [WHO: home care for patients with suspected novel coronavirus (nCoV) infection presenting with mild symptoms and management of contacts]
• [CDC: interim guidance for implementing home care of people not requiring hospitalization for 2019 novel coronavirus (2019-nCoV)]

Special patient groups

Pregnant women

• Data on pregnant women are limited; however, they can generally be treated with the same supportive therapies detailed above, taking into account the physiological changes that occur with pregnancy.[64]

Children

• Data on children are limited; however, guidance for the treatment of children has been published.[7]

Experimental therapies

Drug therapies (e.g., antivirals) are being used in patients with COVID-19; however, unlicensed or experimental treatments should only be administered in the context of ethically-approved clinical trials.[64] See the Emerging section for more information about these treatments.

Corticosteroids

Corticosteroids are being used in some patients with COVID-19; however, they have been found to be ineffective.[4] [66] The WHO (as well as other international pneumonia guidelines) do not routinely recommend systemic corticosteroids for the treatment of viral pneumonia or acute respiratory distress syndrome unless they are indicated for another reason.[64]

Treatment details overview

Please note that formulations/routes and doses may differ between drug names and brands, drug formularies, or locations. Treatment recommendations are specific to patient groups: see disclaimer
Initial

suspected SARS-CoV-2 infection

<table>
<thead>
<tr>
<th></th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>infection prevention and control procedures</td>
</tr>
<tr>
<td>plus</td>
<td>supportive care plus monitoring</td>
</tr>
<tr>
<td>adjunct</td>
<td>empirical antimicrobials</td>
</tr>
</tbody>
</table>

Acute

confirmed SARS-CoV-2 infection

<table>
<thead>
<tr>
<th></th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>hospital admission and infection prevention and control procedures</td>
</tr>
<tr>
<td>plus</td>
<td>supportive care plus monitoring</td>
</tr>
<tr>
<td>adjunct</td>
<td>mechanical ventilation</td>
</tr>
<tr>
<td>adjunct</td>
<td>experimental therapies</td>
</tr>
</tbody>
</table>

- **with pneumonia or comorbidities**

- **without pneumonia or comorbidities**

<table>
<thead>
<tr>
<th></th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>consider home care and isolation</td>
</tr>
<tr>
<td>plus</td>
<td>supportive care plus monitoring</td>
</tr>
</tbody>
</table>
Treatment options

Please note that formulations/routes and doses may differ between drug names and brands, drug formularies, or locations. Treatment recommendations are specific to patient groups: see disclaimer.
COVID-19 Treatment

Initial suspected SARS-CoV-2 infection

1st infection prevention and control procedures

» Immediately isolate all suspected cases in an area separate from other patients, and implement appropriate infection prevention and control procedures. Detailed guidance is available from the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC):

» [WHO: infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected]

» [CDC: interim infection prevention and control recommendations for patients with confirmed 2019 novel coronavirus (2019-nCoV) or persons under investigation for 2019-nCoV in healthcare settings]

» Report all suspected cases to your local health authorities.

plus supportive care plus monitoring

Treatment recommended for ALL patients in selected patient group

» Immediately start supportive care based on the clinical presentation.

» Oxygen: give supplemental oxygen at a rate of 5 L/minute to patients with severe acute respiratory infection and respiratory distress, hypoxaemia, or shock. Titrate flow rates to reach a target SpO₂ ≥90%. [64]

» Fluids: manage fluids conservatively in patients with severe acute respiratory infection when there is no evidence of shock as aggressive fluid resuscitation may worsen oxygenation. [64]

» Symptom relief: give an antipyretic/analgesic for the relief of fever and pain. [64]

» Monitor patients closely for signs of clinical deterioration, such as rapidly progressive respiratory failure and sepsis, and start general supportive care interventions as indicated (e.g., haemodialysis, vasopressor therapy, fluid resuscitation, ventilation, antimicrobials) as appropriate. [64]

adjunct empirical antimicrobials
<table>
<thead>
<tr>
<th>Initial</th>
<th>Treatment recommended for SOME patients in selected patient group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>» Consider starting empirical antimicrobials in patients with suspected infection to cover other potential bacterial pathogens that may cause respiratory infection according to local protocols. Give within 1 hour of initial patient assessment for patients with suspected sepsis. Choice of empirical antimicrobials should be based on the clinical diagnosis, and local epidemiology and susceptibility data. [64]</td>
</tr>
<tr>
<td></td>
<td>» Consider treatment with a neuraminidase inhibitor until influenza is ruled out. [64]</td>
</tr>
<tr>
<td></td>
<td>» De-escalate empiric therapy based on test results and clinical judgement.</td>
</tr>
</tbody>
</table>
Confirmed SARS-CoV-2 infection with pneumonia or comorbidities

1st hospital admission and infection prevention and control procedures

- Promptly admit patients with pneumonia or respiratory distress to an appropriate healthcare facility. Patients with impending or established respiratory failure should be admitted to an intensive care unit.

- Immediately isolate all confirmed cases in an area separate from other patients, and implement appropriate infection prevention and control procedures. Detailed guidance is available from the WHO and the CDC:
 - [WHO: infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected](https://www.who.int/publications/i/item/2020.11)

- Report all confirmed cases to your local health authorities.

- Consider home care, if suitable, in symptomatic patients who no longer require hospitalisation.

Plus supportive care plus monitoring

Treatment recommended for ALL patients in selected patient group

- Immediately start supportive care.

- Oxygen: give supplemental oxygen at a rate of 5 L/minute to patients with severe acute respiratory infection and respiratory distress, hypoxaemia, or shock. Titrate flow rates to reach a target SpO₂ ≥90%. [64]

- Fluids: manage fluids conservatively in patients with severe acute respiratory infection when there is no evidence of shock as aggressive fluid resuscitation may worsen oxygenation. [64]

- Symptom relief: give an antipyretic/analgesic for the relief of fever and pain. [64]

- Monitor patients closely for signs of clinical deterioration, such as rapidly progressive respiratory failure and sepsis, and start general...
Acute

<table>
<thead>
<tr>
<th>Treatment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>supportive care interventions as indicated (e.g., haemodialysis, vasopressor therapy, fluid resuscitation, ventilation, antimicrobials) as appropriate.[64]</td>
<td></td>
</tr>
<tr>
<td>» Some patients with severe illness may require continued antimicrobial therapy once COVID-19 has been confirmed depending on the clinical circumstances.</td>
<td></td>
</tr>
<tr>
<td>adjunct mechanical ventilation</td>
<td></td>
</tr>
<tr>
<td>Treatment recommended for SOME patients in selected patient group</td>
<td></td>
</tr>
<tr>
<td>» Intubation and mechanical ventilation are recommended in patients who are deteriorating and cannot maintain an SpO₂ ≥90% with oxygen therapy.[64] Some patients may develop severe hypoxic respiratory failure, requiring a high fraction of inspired oxygen, and high air flow rates to match inspiratory flow demand. Patients may also have increased work of breathing, demanding positive pressure breathing assistance.</td>
<td></td>
</tr>
<tr>
<td>» High-flow nasal oxygen and non-invasive ventilation are recommended in select patients. Mechanically ventilated patients with acute respiratory distress syndrome should receive a lung-protective, low tidal volume/low inspiratory pressure ventilation strategy. Those with persistent severe hypoxic failure should be considered for prone ventilation.[64]</td>
<td></td>
</tr>
<tr>
<td>» The risk of treatment failure is high in patients with non-acutely reversible conditions, and there is also concern about nosocomial transmission with open ventilation systems and suboptimal non-invasive face mask or nasal pillow seals. More research to define the balance of benefits and risks to patients and health workers is needed.</td>
<td></td>
</tr>
<tr>
<td>» Some patients may require extracorporeal membrane oxygenation (ECMO) according to availability and expertise.[64]</td>
<td></td>
</tr>
<tr>
<td>» It is important to follow local infection prevention and control procedures to prevent transmission to healthcare workers. Endotracheal intubation should be performed by an experienced provider using airborne precautions.</td>
<td></td>
</tr>
<tr>
<td>adjunct experimental therapies</td>
<td></td>
</tr>
<tr>
<td>Treatment recommended for SOME patients in selected patient group</td>
<td></td>
</tr>
</tbody>
</table>
Treatment

without pneumonia or comorbidities

1st consider home care and isolation

- Consider home care in patients who have mild symptoms only (e.g., low-grade fever, cough, fatigue, rhinorrhea, sore throat), with no warning signs (e.g., shortness of breath or difficulty breathing, haemoptysis, increased sputum production, gastrointestinal symptoms, mental status changes), and no underlying health conditions. Otherwise, hospital admission is required.

- Infection prevention and control procedures are still important during home care. Recommend patients use a single room and a single bathroom (if possible), minimise contact with other household members, and wear a surgical mask if contact is necessary.

- More detailed guidance on home care is available from the WHO and the CDC:
 - [WHO: home care for patients with suspected novel coronavirus (nCoV) infection presenting with mild symptoms and management of contacts](#)
 - [CDC: interim guidance for implementing home care of people not requiring hospitalization for 2019 novel coronavirus (2019-nCoV)](#)

- The location of home care may depend on guidance from local health authorities as forced quarantine orders are being used in some countries.

plus supportive care plus monitoring

Treatment recommended for ALL patients in selected patient group

- Recommend symptomatic therapies such as an antipyretic/analgiesic, and advise patients to keep hydrated but not to take too much fluid as this can worsen oxygenation.

- Monitor patients closely and advise them to seek medical care if symptoms worsen as mild illness can rapidly progress to lower respiratory tract disease.
Emerging

Antivirals

Various antivirals are being trialled in patients with COVID-19 (e.g., oseltamivir, lopinavir/ritonavir, ganciclovir, favipiravir, baloxavir marboxil, umifenovir, interferon alfa); however, there are no data to support this.[4] [5] [6] [67] [68] [69] [70] [71] Remdesivir shows in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has been used to treat patients in China, as well as the first patient in the US.[72] [73] [74] Remdesivir

Intravenous immunoglobulin

Intravenous immunoglobulin is being trialled in some patients with COVID-19; however, there are no data to support this.[5]

Chloroquine and hydroxychloroquine

Chloroquine and hydroxychloroquine are being trialled in some patients with COVID-19; however, there are no data to support this.[75] [76] [77] Chloroquine shows in vitro activity against SARS-CoV-2.[73] Chloroquine is likely to be added to the updated version of the Chinese management guidelines.[78]

Traditional Chinese Medicine

Traditional Chinese Medicine is being trialled in some patients with COVID-19 (e.g., Xue-Bi-Jing, Shuang-Huang-Lian, Xin-Guan-2); however, there are no data to support this.[79] [80] [81]
Recommendations

Monitoring

Monitor vital signs (i.e., respiratory rate, heart rate, blood pressure, oxygen saturation) as well as renal function, liver function, and coagulation profile regularly.

Patient instructions

General prevention measures

- Wash hands often with soap and water or an alcohol-based hand sanitiser and avoid touching the eyes, nose, and mouth with unwashed hands.
- Avoid close contact with people (i.e., maintain a distance of at least 1 metre [3 feet]), particularly those who are sick.
- Stay at home if sick and isolate yourself from other people.
- Practice respiratory hygiene (i.e., cover mouth and nose when coughing or sneezing, discard tissue immediately in a closed bin, and wash hands).
- Regularly clean and disinfect frequently touched objects and surfaces.[37] [38]
- [WHO: coronavirus disease (COVID-19) advice for the public]

Travel advice

- Despite guidance from other international agencies, the World Health Organization (WHO) does not currently recommend any travel or trade restrictions to China. The WHO recommends that international travellers practice usual precautions. Precautions include avoiding close contact with people suffering acute respiratory infections; frequent handwashing, especially after contact with people who are ill or their environment; practicing appropriate cough etiquette; avoiding consumption of raw or undercooked animal products; and avoiding close contact with live or dead farm or wild animals.[85]
- In the US, the Centers for Disease Control and Prevention (CDC) recommends avoiding all non-essential travel to China (this does not include Hong Kong, Macau, or Taiwan).[86] However, the US Department of State recommends avoiding all travel to China.[87] Other countries may also recommend avoiding non-essential or all travel to China; consult local guidance for specific recommendations.
- Some countries are temporarily restricting entry to foreign nationals who have been to mainland China in the preceding 14 days, or are enforcing 14-day quarantine periods where the person’s health should be closely monitored (e.g., twice-daily temperature readings).
- Check travel alerts for updated information:
 - [WHO: coronavirus disease (COVID-19) travel advice]
 - [CDC: coronavirus disease 2019 information for travel]
 - [UK Foreign and Commonwealth Office: travel advice - coronavirus (COVID-19)]

Patient resources

- [WHO: coronavirus disease (COVID-19) outbreak]
Complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>Timeframe</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>acute respiratory distress syndrome (ARDS)</td>
<td>short term</td>
<td>medium</td>
</tr>
<tr>
<td>Reported in 17% to 29% of patients in case series.[4] [5] [6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acute cardiac injury</td>
<td>short term</td>
<td>low</td>
</tr>
<tr>
<td>Reported in 7% to 12% of patients in case series.[4] [6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arrhythmias</td>
<td>short term</td>
<td>low</td>
</tr>
<tr>
<td>Reported in 16% of patients in case series.[6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary infection</td>
<td>short term</td>
<td>low</td>
</tr>
<tr>
<td>Reported in 10% of patients in case series.[4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acute respiratory failure</td>
<td>short term</td>
<td>low</td>
</tr>
<tr>
<td>Reported in 8% of patients in case series.[5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acute kidney injury</td>
<td>short term</td>
<td>low</td>
</tr>
<tr>
<td>Reported in 3% to 7% of patients in case series.[4] [5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>septic shock</td>
<td>short term</td>
<td>low</td>
</tr>
<tr>
<td>Reported in 4% to 8% of patients in case series.[4] [5] [6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A systemic inflammatory response syndrome (SIRS) can sometimes accompany viral sepsis. Among 41 hospitalised patients with COVID-19, there were elevations in inflammatory chemokines and cytokines compared with healthy adults.[4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disseminated intravascular coagulation</td>
<td>short term</td>
<td>low</td>
</tr>
<tr>
<td>Reported in 71% of non-survivors.[60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pregnancy-related complications</td>
<td>short term</td>
<td>low</td>
</tr>
<tr>
<td>Retrospective reviews of pregnant women with COVID-19 found that women appeared to have fewer adverse maternal and neonatal complications and outcomes than would be expected for those with severe acute respiratory syndrome (SARS). Adverse effects on the newborn including fetal distress, premature labour, respiratory distress, thrombocytopenia, and abnormal liver function have been reported; however, it is unclear whether these effects are related to maternal SARS-CoV-2 infection.[28] [29]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prognosis

The natural course of infection and prognosis are unknown at this time.

Based on cases reported so far, the case fatality rate is estimated to be approximately 2% to 3% overall, and up to 15% among patients who are ill enough to be admitted to hospital. Most of the patients who have died were older and/or had underlying health conditions.[4] [5] [6] [82]

This is less than the overall case fatality rate reported for severe acute respiratory syndrome coronavirus (SARS) (10%) and Middle East respiratory syndrome (MERS) (37%).[4] Despite the lower case fatality rate, COVID-19 has so far resulted in more deaths than both SARS and MERS combined.[83] The estimated case fatality rate should be treated with caution as the situation is evolving rapidly, and case fatality rates are often overestimated at the onset of outbreaks owing to increased case detection of patients with severe disease.[82]

In one retrospective study of 52 critically ill patients in Wuhan City, 61.5% of patients died by 28 days, and the median time from admission to the intensive care unit to death was 7 days for patients who didn’t survive. Non-survivors were more likely to develop acute respiratory distress syndrome and require mechanical ventilation. Non-survivors were older (>65 years of age) and more likely to have chronic medical illnesses.[84]
Diagnostic guidelines

Europe

COVID-19: guidance for health professionals

Published by: Public Health England
Last published: 2020

COVID-19

Published by: European Centre for Disease Prevention and Control
Last published: 2020

International

Coronavirus disease (COVID-19) technical guidance

Published by: World Health Organization
Last published: 2020

Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases

Published by: World Health Organization
Last published: 2020

Global surveillance for human infection with coronavirus disease (COVID-19)

Published by: World Health Organization
Last published: 2020

Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected

Published by: World Health Organization
Last published: 2020

North America

Information for laboratories

Published by: Centers for Disease Control and Prevention
Last published: 2020

Interim infection prevention and control recommendations for patients with confirmed coronavirus disease 2019 (COVID-19) or persons under investigation for COVID-19 in healthcare settings

Published by: Centers for Disease Control and Prevention
Last published: 2020

Interim US guidance for risk assessment and public health management of persons with potential coronavirus disease 2019 (COVID-19) exposure in travel-associated or community settings

Published by: Centers for Disease Control and Prevention
Last published: 2020
Asia

A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia

Published by: Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team; Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care
Last published: 2020

Treatment guidelines

Europe

COVID-19: guidance for health professionals

Published by: Public Health England
Last published: 2020

Coronavirus: latest news and resources

Published by: BMJ
Last published: 2020

COVID-19

Published by: European Centre for Disease Prevention and Control
Last published: 2020

International

Coronavirus disease (COVID-19) technical guidance

Published by: World Health Organization
Last published: 2020

Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected

Published by: World Health Organization
Last published: 2020

Home care for patients with suspected novel coronavirus (nCoV) infection presenting with mild symptoms and management of contacts

Published by: World Health Organization
Last published: 2020

Advice on the use of masks in the community, during home care and in healthcare settings in the context of the novel coronavirus (2019-nCoV) outbreak

Published by: World Health Organization
Last published: 2020
North America

<table>
<thead>
<tr>
<th>Information for healthcare professionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Centers for Disease Control and Prevention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interim clinical guidance for management of patients with confirmed 2019 novel coronavirus (2019-nCoV) infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Centers for Disease Control and Prevention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interim guidance for implementing home care of people not requiring hospitalization for 2019 novel coronavirus (2019-nCoV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Centers for Disease Control and Prevention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coronavirus disease (COVID-19): outbreak update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Government of Canada</td>
</tr>
</tbody>
</table>

Asia

<table>
<thead>
<tr>
<th>New coronavirus pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Chinese Center for Disease Control and Prevention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team; Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Updates on COVID-19 (coronavirus disease 2019) local situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Ministry of Health Singapore</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Coronavirus (2019-nCoV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: National Institute of Infectious Diseases Japan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New coronavirus infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Japanese Association for Infectious Diseases</td>
</tr>
</tbody>
</table>

Oceania

<table>
<thead>
<tr>
<th>Coronavirus disease 2019 (COVID-19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published by: Department of Health Australia</td>
</tr>
</tbody>
</table>
Online resources

1. WHO: coronavirus disease (COVID-2019) situation reports (external link)
2. CDC: coronavirus disease 2019 (COVID-19) in the US (external link)
3. CDC: locations with confirmed COVID-19 cases (external link)
5. GenBank (external link)
6. WHO: coronavirus disease (COVID-19) advice for the public (external link)
7. BMJ: facemasks for the prevention of infection in healthcare and community settings (external link)
8. WHO: infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected (external link)
9. CDC: interim infection prevention and control recommendations for patients with confirmed coronavirus disease 2019 (COVID-19) or persons under investigation for COVID-19 in healthcare settings (external link)
10. CDC: flowchart to identify and assess 2019 novel coronavirus (external link)
11. CDC: criteria to guide evaluation of persons under investigation (PUI) for 2019-nCoV (external link)
12. WHO: home care for patients with suspected novel coronavirus (nCoV) infection presenting with mild symptoms and management of contacts (external link)
14. WHO: coronavirus disease (COVID-19) travel advice (external link)
15. CDC: coronavirus disease 2019 information for travel (external link)
17. WHO: coronavirus disease (COVID-19) outbreak (external link)
18. CDC: coronavirus disease 2019 (COVID-19) (external link)
Key articles

References

25. Kupferschmidt K. Study claiming new coronavirus can be transmitted by people without symptoms was flawed. February 2020 [internet publication]. Full text

36. Centers for Disease Control and Prevention. Criteria to guide evaluation of patients under investigation (PUI) for 2019-nCoV. February 2020 [internet publication]. Full text

42. Mahase E. China coronavirus: what do we know so far? BMJ. 2020 Jan 24;368:m308. Full text Abstract

44. World Health Organization. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected. January 2020 [internet publication]. Full text

61. US Food and Drug Administration. FDA takes significant step in coronavirus response efforts, issues emergency use authorization for the first 2019 novel coronavirus diagnostic: critical milestone reached in response to this outbreak. February 2020 [internet publication]. Full text

64. World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. January 2020 [internet publication]. Full text

68. Chinese Clinical Trial Registry. A randomized, open-label, multi-centre clinical trial evaluating and comparing the safety and efficiency of ASC09/ritonavir and lopinavir/ritonavir for confirmed cases of novel coronavirus pneumonia (COVID-19). February 2020 [internet publication]. Full text

COVID-19

83. Mahase E. Coronavirus covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ. 2020 Feb 18;368:m641. Full text Abstract

87. US Department of State. China travel advisory. February 2020 [internet publication]. Full text
Figure 1: Illustration revealing ultrastructural morphology exhibited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) when viewed with electron microscopically

Centers for Disease Control and Prevention
Disclaimer

This content is meant for medical professionals situated outside of the United States and Canada. The BMJ Publishing Group Ltd ("BMJ Group") tries to ensure that the information provided is accurate and up-to-date, but we do not warrant that it is nor do our licensors who supply certain content linked to or otherwise accessible from our content. The BMJ Group does not advocate or endorse the use of any drug or therapy contained within nor does it diagnose patients. Medical professionals should use their own professional judgement in using this information and caring for their patients and the information herein should not be considered a substitute for that.

This information is not intended to cover all possible diagnosis methods, treatments, follow up, drugs and any contraindications or side effects. In addition such standards and practices in medicine change as new data become available, and you should consult a variety of sources. We strongly recommend that users independently verify specified diagnosis, treatments and follow up and ensure it is appropriate for your patient within your region. In addition, with respect to prescription medication, you are advised to check the product information sheet accompanying each drug to verify conditions of use and identify any changes in dosage schedule or contraindications, particularly if the agent to be administered is new, infrequently used, or has a narrow therapeutic range. You must always check that drugs referenced are licensed for the specified use and at the specified doses in your region. This information is provided on an "as is" basis and to the fullest extent permitted by law the BMJ Group and its licensors assume no responsibility for any aspect of healthcare administered with the aid of this information or any other use of this information.

View our full Website Terms and Conditions.

Contact us

+ 44 (0) 207 111 1105
support@bmj.com

BMJ
BMA House
Tavistock Square
London
WC1H 9JR
UK
Contributors:

// Authors:

Nicholas J. Beeching, MA, BM BCh, FRCP, FRACP, FFTM RCPS (Glasg), FESCMID, DCH, DTM&H
Consultant and Honorary Senior Lecturer in Infectious Diseases
Royal Liverpool University Hospital and Liverpool School of Tropical Medicine, Liverpool, UK
DISCLOSURES: NJB is partially supported by the National Institute of Health Research Health Protection Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine. He is affiliated with Liverpool School of Tropical Medicine. The views expressed are those of the author and not necessarily those of the NHS, the NIHR, the Department of Health, or PHE.

Tom E. Fletcher, MBE, PhD, MBChB, MRCP, DTM&H
Senior Clinical Lecturer and Defence Consultant in Infectious Diseases
Royal Liverpool University Hospital and Liverpool School of Tropical Medicine, Liverpool, UK
DISCLOSURES: TEF is a consultant/expert panel member to the World Health Organization, and is funded by the UK Surgeon General, the NHS, and Liverpool School of Tropical Medicine. TEF is partially supported by the National Institute of Health Research Health Protection Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine. He is affiliated with Liverpool School of Tropical Medicine. He has received research grants from the Wellcome Trust, Medical Research Council, and the UK Public Health Rapid Support Team (UK-PHRST). The views expressed are those of the author and not necessarily those of the NHS, the NIHR, the Department of Health, or PHE.

Robert Fowler, MDCM, MS (Epi), FRCP(C)
H. Barrie Fairley Professor of Critical Care
University Health Network and Interdepartmental Division of Critical Care Medicine, Director, Clinical Epidemiology and Health Care Research, Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Chief, Tory Trauma Program, Sunnybrook Hospital, Toronto, Canada
DISCLOSURES: RF declares that he has no competing interests.

// Peer Reviewers:

William A. Petri, Jr., MD, PhD
Professor
Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA
DISCLOSURES: WAP declares that he has no competing interests.

Xin Zhang, MD, PhD
Attending Physician
The Fifth Medical Center of PLA General Hospital, Clinical Division and Research Center of Infectious Disease, Beijing, China
DISCLOSURES: XZ declares that he has no competing interests.

Ran Nir-Paz, MD
Associate Professor in Medicine
Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
DISCLOSURES: RNP has received research grants from US-Israel Binational Science Foundation, Hebrew University, Rosetrees Trust, and SpeeDx. He is chair of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Mycoplasma and Chlamydia Infections (ESGMAC). RNP is a consultant for and has stocks in eDAS Healthcare. He is also chairperson of the Israeli Society for Infectious Diseases guidelines committee.